ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  0elnn Unicode version

Theorem 0elnn 4655
Description: A natural number is either the empty set or has the empty set as an element. (Contributed by Jim Kingdon, 23-Aug-2019.)
Assertion
Ref Expression
0elnn  |-  ( A  e.  om  ->  ( A  =  (/)  \/  (/)  e.  A
) )

Proof of Theorem 0elnn
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqeq1 2203 . . 3  |-  ( x  =  (/)  ->  ( x  =  (/)  <->  (/)  =  (/) ) )
2 eleq2 2260 . . 3  |-  ( x  =  (/)  ->  ( (/)  e.  x  <->  (/)  e.  (/) ) )
31, 2orbi12d 794 . 2  |-  ( x  =  (/)  ->  ( ( x  =  (/)  \/  (/)  e.  x
)  <->  ( (/)  =  (/)  \/  (/)  e.  (/) ) ) )
4 eqeq1 2203 . . 3  |-  ( x  =  y  ->  (
x  =  (/)  <->  y  =  (/) ) )
5 eleq2 2260 . . 3  |-  ( x  =  y  ->  ( (/) 
e.  x  <->  (/)  e.  y ) )
64, 5orbi12d 794 . 2  |-  ( x  =  y  ->  (
( x  =  (/)  \/  (/)  e.  x )  <->  ( y  =  (/)  \/  (/)  e.  y ) ) )
7 eqeq1 2203 . . 3  |-  ( x  =  suc  y  -> 
( x  =  (/)  <->  suc  y  =  (/) ) )
8 eleq2 2260 . . 3  |-  ( x  =  suc  y  -> 
( (/)  e.  x  <->  (/)  e.  suc  y ) )
97, 8orbi12d 794 . 2  |-  ( x  =  suc  y  -> 
( ( x  =  (/)  \/  (/)  e.  x )  <-> 
( suc  y  =  (/) 
\/  (/)  e.  suc  y
) ) )
10 eqeq1 2203 . . 3  |-  ( x  =  A  ->  (
x  =  (/)  <->  A  =  (/) ) )
11 eleq2 2260 . . 3  |-  ( x  =  A  ->  ( (/) 
e.  x  <->  (/)  e.  A
) )
1210, 11orbi12d 794 . 2  |-  ( x  =  A  ->  (
( x  =  (/)  \/  (/)  e.  x )  <->  ( A  =  (/)  \/  (/)  e.  A
) ) )
13 eqid 2196 . . 3  |-  (/)  =  (/)
1413orci 732 . 2  |-  ( (/)  =  (/)  \/  (/)  e.  (/) )
15 0ex 4160 . . . . . . 7  |-  (/)  e.  _V
1615sucid 4452 . . . . . 6  |-  (/)  e.  suc  (/)
17 suceq 4437 . . . . . 6  |-  ( y  =  (/)  ->  suc  y  =  suc  (/) )
1816, 17eleqtrrid 2286 . . . . 5  |-  ( y  =  (/)  ->  (/)  e.  suc  y )
1918a1i 9 . . . 4  |-  ( y  e.  om  ->  (
y  =  (/)  ->  (/)  e.  suc  y ) )
20 sssucid 4450 . . . . . 6  |-  y  C_  suc  y
2120a1i 9 . . . . 5  |-  ( y  e.  om  ->  y  C_ 
suc  y )
2221sseld 3182 . . . 4  |-  ( y  e.  om  ->  ( (/) 
e.  y  ->  (/)  e.  suc  y ) )
2319, 22jaod 718 . . 3  |-  ( y  e.  om  ->  (
( y  =  (/)  \/  (/)  e.  y )  ->  (/) 
e.  suc  y )
)
24 olc 712 . . 3  |-  ( (/)  e.  suc  y  ->  ( suc  y  =  (/)  \/  (/)  e.  suc  y ) )
2523, 24syl6 33 . 2  |-  ( y  e.  om  ->  (
( y  =  (/)  \/  (/)  e.  y )  -> 
( suc  y  =  (/) 
\/  (/)  e.  suc  y
) ) )
263, 6, 9, 12, 14, 25finds 4636 1  |-  ( A  e.  om  ->  ( A  =  (/)  \/  (/)  e.  A
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ wo 709    = wceq 1364    e. wcel 2167    C_ wss 3157   (/)c0 3450   suc csuc 4400   omcom 4626
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-iinf 4624
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-uni 3840  df-int 3875  df-suc 4406  df-iom 4627
This theorem is referenced by:  nn0eln0  4656  nnsucsssuc  6550  nntri3or  6551  nnm00  6588  ssfilem  6936  diffitest  6948  fiintim  6992  enumct  7181  nnnninfeq  7194  elni2  7381  enq0tr  7501  bj-charfunr  15456
  Copyright terms: Public domain W3C validator