ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  0elnn Unicode version

Theorem 0elnn 4685
Description: A natural number is either the empty set or has the empty set as an element. (Contributed by Jim Kingdon, 23-Aug-2019.)
Assertion
Ref Expression
0elnn  |-  ( A  e.  om  ->  ( A  =  (/)  \/  (/)  e.  A
) )

Proof of Theorem 0elnn
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqeq1 2214 . . 3  |-  ( x  =  (/)  ->  ( x  =  (/)  <->  (/)  =  (/) ) )
2 eleq2 2271 . . 3  |-  ( x  =  (/)  ->  ( (/)  e.  x  <->  (/)  e.  (/) ) )
31, 2orbi12d 795 . 2  |-  ( x  =  (/)  ->  ( ( x  =  (/)  \/  (/)  e.  x
)  <->  ( (/)  =  (/)  \/  (/)  e.  (/) ) ) )
4 eqeq1 2214 . . 3  |-  ( x  =  y  ->  (
x  =  (/)  <->  y  =  (/) ) )
5 eleq2 2271 . . 3  |-  ( x  =  y  ->  ( (/) 
e.  x  <->  (/)  e.  y ) )
64, 5orbi12d 795 . 2  |-  ( x  =  y  ->  (
( x  =  (/)  \/  (/)  e.  x )  <->  ( y  =  (/)  \/  (/)  e.  y ) ) )
7 eqeq1 2214 . . 3  |-  ( x  =  suc  y  -> 
( x  =  (/)  <->  suc  y  =  (/) ) )
8 eleq2 2271 . . 3  |-  ( x  =  suc  y  -> 
( (/)  e.  x  <->  (/)  e.  suc  y ) )
97, 8orbi12d 795 . 2  |-  ( x  =  suc  y  -> 
( ( x  =  (/)  \/  (/)  e.  x )  <-> 
( suc  y  =  (/) 
\/  (/)  e.  suc  y
) ) )
10 eqeq1 2214 . . 3  |-  ( x  =  A  ->  (
x  =  (/)  <->  A  =  (/) ) )
11 eleq2 2271 . . 3  |-  ( x  =  A  ->  ( (/) 
e.  x  <->  (/)  e.  A
) )
1210, 11orbi12d 795 . 2  |-  ( x  =  A  ->  (
( x  =  (/)  \/  (/)  e.  x )  <->  ( A  =  (/)  \/  (/)  e.  A
) ) )
13 eqid 2207 . . 3  |-  (/)  =  (/)
1413orci 733 . 2  |-  ( (/)  =  (/)  \/  (/)  e.  (/) )
15 0ex 4187 . . . . . . 7  |-  (/)  e.  _V
1615sucid 4482 . . . . . 6  |-  (/)  e.  suc  (/)
17 suceq 4467 . . . . . 6  |-  ( y  =  (/)  ->  suc  y  =  suc  (/) )
1816, 17eleqtrrid 2297 . . . . 5  |-  ( y  =  (/)  ->  (/)  e.  suc  y )
1918a1i 9 . . . 4  |-  ( y  e.  om  ->  (
y  =  (/)  ->  (/)  e.  suc  y ) )
20 sssucid 4480 . . . . . 6  |-  y  C_  suc  y
2120a1i 9 . . . . 5  |-  ( y  e.  om  ->  y  C_ 
suc  y )
2221sseld 3200 . . . 4  |-  ( y  e.  om  ->  ( (/) 
e.  y  ->  (/)  e.  suc  y ) )
2319, 22jaod 719 . . 3  |-  ( y  e.  om  ->  (
( y  =  (/)  \/  (/)  e.  y )  ->  (/) 
e.  suc  y )
)
24 olc 713 . . 3  |-  ( (/)  e.  suc  y  ->  ( suc  y  =  (/)  \/  (/)  e.  suc  y ) )
2523, 24syl6 33 . 2  |-  ( y  e.  om  ->  (
( y  =  (/)  \/  (/)  e.  y )  -> 
( suc  y  =  (/) 
\/  (/)  e.  suc  y
) ) )
263, 6, 9, 12, 14, 25finds 4666 1  |-  ( A  e.  om  ->  ( A  =  (/)  \/  (/)  e.  A
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ wo 710    = wceq 1373    e. wcel 2178    C_ wss 3174   (/)c0 3468   suc csuc 4430   omcom 4656
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-iinf 4654
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-v 2778  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-pw 3628  df-sn 3649  df-pr 3650  df-uni 3865  df-int 3900  df-suc 4436  df-iom 4657
This theorem is referenced by:  nn0eln0  4686  nnsucsssuc  6601  nntri3or  6602  nnm00  6639  ssfilem  6998  diffitest  7010  fiintim  7054  enumct  7243  nnnninfeq  7256  elni2  7462  enq0tr  7582  bj-charfunr  15945
  Copyright terms: Public domain W3C validator