Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 0elnn | Unicode version |
Description: A natural number is either the empty set or has the empty set as an element. (Contributed by Jim Kingdon, 23-Aug-2019.) |
Ref | Expression |
---|---|
0elnn |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq1 2172 | . . 3 | |
2 | eleq2 2230 | . . 3 | |
3 | 1, 2 | orbi12d 783 | . 2 |
4 | eqeq1 2172 | . . 3 | |
5 | eleq2 2230 | . . 3 | |
6 | 4, 5 | orbi12d 783 | . 2 |
7 | eqeq1 2172 | . . 3 | |
8 | eleq2 2230 | . . 3 | |
9 | 7, 8 | orbi12d 783 | . 2 |
10 | eqeq1 2172 | . . 3 | |
11 | eleq2 2230 | . . 3 | |
12 | 10, 11 | orbi12d 783 | . 2 |
13 | eqid 2165 | . . 3 | |
14 | 13 | orci 721 | . 2 |
15 | 0ex 4109 | . . . . . . 7 | |
16 | 15 | sucid 4395 | . . . . . 6 |
17 | suceq 4380 | . . . . . 6 | |
18 | 16, 17 | eleqtrrid 2256 | . . . . 5 |
19 | 18 | a1i 9 | . . . 4 |
20 | sssucid 4393 | . . . . . 6 | |
21 | 20 | a1i 9 | . . . . 5 |
22 | 21 | sseld 3141 | . . . 4 |
23 | 19, 22 | jaod 707 | . . 3 |
24 | olc 701 | . . 3 | |
25 | 23, 24 | syl6 33 | . 2 |
26 | 3, 6, 9, 12, 14, 25 | finds 4577 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wo 698 wceq 1343 wcel 2136 wss 3116 c0 3409 csuc 4343 com 4567 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-iinf 4565 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-uni 3790 df-int 3825 df-suc 4349 df-iom 4568 |
This theorem is referenced by: nn0eln0 4597 nnsucsssuc 6460 nntri3or 6461 nnm00 6497 ssfilem 6841 diffitest 6853 fiintim 6894 enumct 7080 nnnninfeq 7092 elni2 7255 enq0tr 7375 bj-charfunr 13692 |
Copyright terms: Public domain | W3C validator |