Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 0elnn | Unicode version |
Description: A natural number is either the empty set or has the empty set as an element. (Contributed by Jim Kingdon, 23-Aug-2019.) |
Ref | Expression |
---|---|
0elnn |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq1 2177 | . . 3 | |
2 | eleq2 2234 | . . 3 | |
3 | 1, 2 | orbi12d 788 | . 2 |
4 | eqeq1 2177 | . . 3 | |
5 | eleq2 2234 | . . 3 | |
6 | 4, 5 | orbi12d 788 | . 2 |
7 | eqeq1 2177 | . . 3 | |
8 | eleq2 2234 | . . 3 | |
9 | 7, 8 | orbi12d 788 | . 2 |
10 | eqeq1 2177 | . . 3 | |
11 | eleq2 2234 | . . 3 | |
12 | 10, 11 | orbi12d 788 | . 2 |
13 | eqid 2170 | . . 3 | |
14 | 13 | orci 726 | . 2 |
15 | 0ex 4116 | . . . . . . 7 | |
16 | 15 | sucid 4402 | . . . . . 6 |
17 | suceq 4387 | . . . . . 6 | |
18 | 16, 17 | eleqtrrid 2260 | . . . . 5 |
19 | 18 | a1i 9 | . . . 4 |
20 | sssucid 4400 | . . . . . 6 | |
21 | 20 | a1i 9 | . . . . 5 |
22 | 21 | sseld 3146 | . . . 4 |
23 | 19, 22 | jaod 712 | . . 3 |
24 | olc 706 | . . 3 | |
25 | 23, 24 | syl6 33 | . 2 |
26 | 3, 6, 9, 12, 14, 25 | finds 4584 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wo 703 wceq 1348 wcel 2141 wss 3121 c0 3414 csuc 4350 com 4574 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-iinf 4572 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3568 df-sn 3589 df-pr 3590 df-uni 3797 df-int 3832 df-suc 4356 df-iom 4575 |
This theorem is referenced by: nn0eln0 4604 nnsucsssuc 6471 nntri3or 6472 nnm00 6509 ssfilem 6853 diffitest 6865 fiintim 6906 enumct 7092 nnnninfeq 7104 elni2 7276 enq0tr 7396 bj-charfunr 13845 |
Copyright terms: Public domain | W3C validator |