ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  0elnn Unicode version

Theorem 0elnn 4711
Description: A natural number is either the empty set or has the empty set as an element. (Contributed by Jim Kingdon, 23-Aug-2019.)
Assertion
Ref Expression
0elnn  |-  ( A  e.  om  ->  ( A  =  (/)  \/  (/)  e.  A
) )

Proof of Theorem 0elnn
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqeq1 2236 . . 3  |-  ( x  =  (/)  ->  ( x  =  (/)  <->  (/)  =  (/) ) )
2 eleq2 2293 . . 3  |-  ( x  =  (/)  ->  ( (/)  e.  x  <->  (/)  e.  (/) ) )
31, 2orbi12d 798 . 2  |-  ( x  =  (/)  ->  ( ( x  =  (/)  \/  (/)  e.  x
)  <->  ( (/)  =  (/)  \/  (/)  e.  (/) ) ) )
4 eqeq1 2236 . . 3  |-  ( x  =  y  ->  (
x  =  (/)  <->  y  =  (/) ) )
5 eleq2 2293 . . 3  |-  ( x  =  y  ->  ( (/) 
e.  x  <->  (/)  e.  y ) )
64, 5orbi12d 798 . 2  |-  ( x  =  y  ->  (
( x  =  (/)  \/  (/)  e.  x )  <->  ( y  =  (/)  \/  (/)  e.  y ) ) )
7 eqeq1 2236 . . 3  |-  ( x  =  suc  y  -> 
( x  =  (/)  <->  suc  y  =  (/) ) )
8 eleq2 2293 . . 3  |-  ( x  =  suc  y  -> 
( (/)  e.  x  <->  (/)  e.  suc  y ) )
97, 8orbi12d 798 . 2  |-  ( x  =  suc  y  -> 
( ( x  =  (/)  \/  (/)  e.  x )  <-> 
( suc  y  =  (/) 
\/  (/)  e.  suc  y
) ) )
10 eqeq1 2236 . . 3  |-  ( x  =  A  ->  (
x  =  (/)  <->  A  =  (/) ) )
11 eleq2 2293 . . 3  |-  ( x  =  A  ->  ( (/) 
e.  x  <->  (/)  e.  A
) )
1210, 11orbi12d 798 . 2  |-  ( x  =  A  ->  (
( x  =  (/)  \/  (/)  e.  x )  <->  ( A  =  (/)  \/  (/)  e.  A
) ) )
13 eqid 2229 . . 3  |-  (/)  =  (/)
1413orci 736 . 2  |-  ( (/)  =  (/)  \/  (/)  e.  (/) )
15 0ex 4211 . . . . . . 7  |-  (/)  e.  _V
1615sucid 4508 . . . . . 6  |-  (/)  e.  suc  (/)
17 suceq 4493 . . . . . 6  |-  ( y  =  (/)  ->  suc  y  =  suc  (/) )
1816, 17eleqtrrid 2319 . . . . 5  |-  ( y  =  (/)  ->  (/)  e.  suc  y )
1918a1i 9 . . . 4  |-  ( y  e.  om  ->  (
y  =  (/)  ->  (/)  e.  suc  y ) )
20 sssucid 4506 . . . . . 6  |-  y  C_  suc  y
2120a1i 9 . . . . 5  |-  ( y  e.  om  ->  y  C_ 
suc  y )
2221sseld 3223 . . . 4  |-  ( y  e.  om  ->  ( (/) 
e.  y  ->  (/)  e.  suc  y ) )
2319, 22jaod 722 . . 3  |-  ( y  e.  om  ->  (
( y  =  (/)  \/  (/)  e.  y )  ->  (/) 
e.  suc  y )
)
24 olc 716 . . 3  |-  ( (/)  e.  suc  y  ->  ( suc  y  =  (/)  \/  (/)  e.  suc  y ) )
2523, 24syl6 33 . 2  |-  ( y  e.  om  ->  (
( y  =  (/)  \/  (/)  e.  y )  -> 
( suc  y  =  (/) 
\/  (/)  e.  suc  y
) ) )
263, 6, 9, 12, 14, 25finds 4692 1  |-  ( A  e.  om  ->  ( A  =  (/)  \/  (/)  e.  A
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ wo 713    = wceq 1395    e. wcel 2200    C_ wss 3197   (/)c0 3491   suc csuc 4456   omcom 4682
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-iinf 4680
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-uni 3889  df-int 3924  df-suc 4462  df-iom 4683
This theorem is referenced by:  nn0eln0  4712  nnsucsssuc  6638  nntri3or  6639  nnm00  6676  ssfilem  7037  diffitest  7049  fiintim  7093  enumct  7282  nnnninfeq  7295  elni2  7501  enq0tr  7621  bj-charfunr  16173
  Copyright terms: Public domain W3C validator