ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rdgtfr Unicode version

Theorem rdgtfr 6342
Description: The recursion rule for the recursive definition generator is defined everywhere. (Contributed by Jim Kingdon, 14-May-2020.)
Assertion
Ref Expression
rdgtfr  |-  ( ( A. z ( F `
 z )  e. 
_V  /\  A  e.  V )  ->  ( Fun  ( g  e.  _V  |->  ( A  u.  U_ x  e.  dom  g ( F `
 ( g `  x ) ) ) )  /\  ( ( g  e.  _V  |->  ( A  u.  U_ x  e.  dom  g ( F `
 ( g `  x ) ) ) ) `  f )  e.  _V ) )
Distinct variable groups:    A, g    x, g, z, F
Allowed substitution hints:    A( x, z, f)    F( f)    V( x, z, f, g)

Proof of Theorem rdgtfr
StepHypRef Expression
1 elex 2737 . 2  |-  ( A  e.  V  ->  A  e.  _V )
2 funmpt 5226 . . . 4  |-  Fun  (
g  e.  _V  |->  ( A  u.  U_ x  e.  dom  g ( F `
 ( g `  x ) ) ) )
3 vex 2729 . . . . 5  |-  f  e. 
_V
4 vex 2729 . . . . . . . . . . 11  |-  g  e. 
_V
54dmex 4870 . . . . . . . . . 10  |-  dom  g  e.  _V
6 vex 2729 . . . . . . . . . . . . 13  |-  x  e. 
_V
74, 6fvex 5506 . . . . . . . . . . . 12  |-  ( g `
 x )  e. 
_V
8 fveq2 5486 . . . . . . . . . . . . 13  |-  ( z  =  ( g `  x )  ->  ( F `  z )  =  ( F `  ( g `  x
) ) )
98eleq1d 2235 . . . . . . . . . . . 12  |-  ( z  =  ( g `  x )  ->  (
( F `  z
)  e.  _V  <->  ( F `  ( g `  x
) )  e.  _V ) )
107, 9spcv 2820 . . . . . . . . . . 11  |-  ( A. z ( F `  z )  e.  _V  ->  ( F `  (
g `  x )
)  e.  _V )
1110ralrimivw 2540 . . . . . . . . . 10  |-  ( A. z ( F `  z )  e.  _V  ->  A. x  e.  dom  g ( F `  ( g `  x
) )  e.  _V )
12 iunexg 6087 . . . . . . . . . 10  |-  ( ( dom  g  e.  _V  /\ 
A. x  e.  dom  g ( F `  ( g `  x
) )  e.  _V )  ->  U_ x  e.  dom  g ( F `  ( g `  x
) )  e.  _V )
135, 11, 12sylancr 411 . . . . . . . . 9  |-  ( A. z ( F `  z )  e.  _V  ->  U_ x  e.  dom  g ( F `  ( g `  x
) )  e.  _V )
14 unexg 4421 . . . . . . . . 9  |-  ( ( A  e.  _V  /\  U_ x  e.  dom  g
( F `  (
g `  x )
)  e.  _V )  ->  ( A  u.  U_ x  e.  dom  g ( F `  ( g `
 x ) ) )  e.  _V )
1513, 14sylan2 284 . . . . . . . 8  |-  ( ( A  e.  _V  /\  A. z ( F `  z )  e.  _V )  ->  ( A  u.  U_ x  e.  dom  g
( F `  (
g `  x )
) )  e.  _V )
1615ancoms 266 . . . . . . 7  |-  ( ( A. z ( F `
 z )  e. 
_V  /\  A  e.  _V )  ->  ( A  u.  U_ x  e. 
dom  g ( F `
 ( g `  x ) ) )  e.  _V )
1716ralrimivw 2540 . . . . . 6  |-  ( ( A. z ( F `
 z )  e. 
_V  /\  A  e.  _V )  ->  A. g  e.  _V  ( A  u.  U_ x  e.  dom  g
( F `  (
g `  x )
) )  e.  _V )
18 dmmptg 5101 . . . . . 6  |-  ( A. g  e.  _V  ( A  u.  U_ x  e. 
dom  g ( F `
 ( g `  x ) ) )  e.  _V  ->  dom  ( g  e.  _V  |->  ( A  u.  U_ x  e.  dom  g ( F `
 ( g `  x ) ) ) )  =  _V )
1917, 18syl 14 . . . . 5  |-  ( ( A. z ( F `
 z )  e. 
_V  /\  A  e.  _V )  ->  dom  (
g  e.  _V  |->  ( A  u.  U_ x  e.  dom  g ( F `
 ( g `  x ) ) ) )  =  _V )
203, 19eleqtrrid 2256 . . . 4  |-  ( ( A. z ( F `
 z )  e. 
_V  /\  A  e.  _V )  ->  f  e. 
dom  ( g  e. 
_V  |->  ( A  u.  U_ x  e.  dom  g
( F `  (
g `  x )
) ) ) )
21 funfvex 5503 . . . 4  |-  ( ( Fun  ( g  e. 
_V  |->  ( A  u.  U_ x  e.  dom  g
( F `  (
g `  x )
) ) )  /\  f  e.  dom  ( g  e.  _V  |->  ( A  u.  U_ x  e. 
dom  g ( F `
 ( g `  x ) ) ) ) )  ->  (
( g  e.  _V  |->  ( A  u.  U_ x  e.  dom  g ( F `
 ( g `  x ) ) ) ) `  f )  e.  _V )
222, 20, 21sylancr 411 . . 3  |-  ( ( A. z ( F `
 z )  e. 
_V  /\  A  e.  _V )  ->  ( ( g  e.  _V  |->  ( A  u.  U_ x  e.  dom  g ( F `
 ( g `  x ) ) ) ) `  f )  e.  _V )
2322, 2jctil 310 . 2  |-  ( ( A. z ( F `
 z )  e. 
_V  /\  A  e.  _V )  ->  ( Fun  ( g  e.  _V  |->  ( A  u.  U_ x  e.  dom  g ( F `
 ( g `  x ) ) ) )  /\  ( ( g  e.  _V  |->  ( A  u.  U_ x  e.  dom  g ( F `
 ( g `  x ) ) ) ) `  f )  e.  _V ) )
241, 23sylan2 284 1  |-  ( ( A. z ( F `
 z )  e. 
_V  /\  A  e.  V )  ->  ( Fun  ( g  e.  _V  |->  ( A  u.  U_ x  e.  dom  g ( F `
 ( g `  x ) ) ) )  /\  ( ( g  e.  _V  |->  ( A  u.  U_ x  e.  dom  g ( F `
 ( g `  x ) ) ) ) `  f )  e.  _V ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103   A.wal 1341    = wceq 1343    e. wcel 2136   A.wral 2444   _Vcvv 2726    u. cun 3114   U_ciun 3866    |-> cmpt 4043   dom cdm 4604   Fun wfun 5182   ` cfv 5188
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196
This theorem is referenced by:  rdgifnon2  6348
  Copyright terms: Public domain W3C validator