Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > rdgtfr | Unicode version |
Description: The recursion rule for the recursive definition generator is defined everywhere. (Contributed by Jim Kingdon, 14-May-2020.) |
Ref | Expression |
---|---|
rdgtfr |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 2746 | . 2 | |
2 | funmpt 5246 | . . . 4 | |
3 | vex 2738 | . . . . 5 | |
4 | vex 2738 | . . . . . . . . . . 11 | |
5 | 4 | dmex 4886 | . . . . . . . . . 10 |
6 | vex 2738 | . . . . . . . . . . . . 13 | |
7 | 4, 6 | fvex 5527 | . . . . . . . . . . . 12 |
8 | fveq2 5507 | . . . . . . . . . . . . 13 | |
9 | 8 | eleq1d 2244 | . . . . . . . . . . . 12 |
10 | 7, 9 | spcv 2829 | . . . . . . . . . . 11 |
11 | 10 | ralrimivw 2549 | . . . . . . . . . 10 |
12 | iunexg 6110 | . . . . . . . . . 10 | |
13 | 5, 11, 12 | sylancr 414 | . . . . . . . . 9 |
14 | unexg 4437 | . . . . . . . . 9 | |
15 | 13, 14 | sylan2 286 | . . . . . . . 8 |
16 | 15 | ancoms 268 | . . . . . . 7 |
17 | 16 | ralrimivw 2549 | . . . . . 6 |
18 | dmmptg 5118 | . . . . . 6 | |
19 | 17, 18 | syl 14 | . . . . 5 |
20 | 3, 19 | eleqtrrid 2265 | . . . 4 |
21 | funfvex 5524 | . . . 4 | |
22 | 2, 20, 21 | sylancr 414 | . . 3 |
23 | 22, 2 | jctil 312 | . 2 |
24 | 1, 23 | sylan2 286 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 104 wal 1351 wceq 1353 wcel 2146 wral 2453 cvv 2735 cun 3125 ciun 3882 cmpt 4059 cdm 4620 wfun 5202 cfv 5208 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-coll 4113 ax-sep 4116 ax-pow 4169 ax-pr 4203 ax-un 4427 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ral 2458 df-rex 2459 df-reu 2460 df-rab 2462 df-v 2737 df-sbc 2961 df-csb 3056 df-un 3131 df-in 3133 df-ss 3140 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-iun 3884 df-br 3999 df-opab 4060 df-mpt 4061 df-id 4287 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-rn 4631 df-res 4632 df-ima 4633 df-iota 5170 df-fun 5210 df-fn 5211 df-f 5212 df-f1 5213 df-fo 5214 df-f1o 5215 df-fv 5216 |
This theorem is referenced by: rdgifnon2 6371 |
Copyright terms: Public domain | W3C validator |