ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rdgtfr Unicode version

Theorem rdgtfr 6520
Description: The recursion rule for the recursive definition generator is defined everywhere. (Contributed by Jim Kingdon, 14-May-2020.)
Assertion
Ref Expression
rdgtfr  |-  ( ( A. z ( F `
 z )  e. 
_V  /\  A  e.  V )  ->  ( Fun  ( g  e.  _V  |->  ( A  u.  U_ x  e.  dom  g ( F `
 ( g `  x ) ) ) )  /\  ( ( g  e.  _V  |->  ( A  u.  U_ x  e.  dom  g ( F `
 ( g `  x ) ) ) ) `  f )  e.  _V ) )
Distinct variable groups:    A, g    x, g, z, F
Allowed substitution hints:    A( x, z, f)    F( f)    V( x, z, f, g)

Proof of Theorem rdgtfr
StepHypRef Expression
1 elex 2811 . 2  |-  ( A  e.  V  ->  A  e.  _V )
2 funmpt 5356 . . . 4  |-  Fun  (
g  e.  _V  |->  ( A  u.  U_ x  e.  dom  g ( F `
 ( g `  x ) ) ) )
3 vex 2802 . . . . 5  |-  f  e. 
_V
4 vex 2802 . . . . . . . . . . 11  |-  g  e. 
_V
54dmex 4991 . . . . . . . . . 10  |-  dom  g  e.  _V
6 vex 2802 . . . . . . . . . . . . 13  |-  x  e. 
_V
74, 6fvex 5647 . . . . . . . . . . . 12  |-  ( g `
 x )  e. 
_V
8 fveq2 5627 . . . . . . . . . . . . 13  |-  ( z  =  ( g `  x )  ->  ( F `  z )  =  ( F `  ( g `  x
) ) )
98eleq1d 2298 . . . . . . . . . . . 12  |-  ( z  =  ( g `  x )  ->  (
( F `  z
)  e.  _V  <->  ( F `  ( g `  x
) )  e.  _V ) )
107, 9spcv 2897 . . . . . . . . . . 11  |-  ( A. z ( F `  z )  e.  _V  ->  ( F `  (
g `  x )
)  e.  _V )
1110ralrimivw 2604 . . . . . . . . . 10  |-  ( A. z ( F `  z )  e.  _V  ->  A. x  e.  dom  g ( F `  ( g `  x
) )  e.  _V )
12 iunexg 6264 . . . . . . . . . 10  |-  ( ( dom  g  e.  _V  /\ 
A. x  e.  dom  g ( F `  ( g `  x
) )  e.  _V )  ->  U_ x  e.  dom  g ( F `  ( g `  x
) )  e.  _V )
135, 11, 12sylancr 414 . . . . . . . . 9  |-  ( A. z ( F `  z )  e.  _V  ->  U_ x  e.  dom  g ( F `  ( g `  x
) )  e.  _V )
14 unexg 4534 . . . . . . . . 9  |-  ( ( A  e.  _V  /\  U_ x  e.  dom  g
( F `  (
g `  x )
)  e.  _V )  ->  ( A  u.  U_ x  e.  dom  g ( F `  ( g `
 x ) ) )  e.  _V )
1513, 14sylan2 286 . . . . . . . 8  |-  ( ( A  e.  _V  /\  A. z ( F `  z )  e.  _V )  ->  ( A  u.  U_ x  e.  dom  g
( F `  (
g `  x )
) )  e.  _V )
1615ancoms 268 . . . . . . 7  |-  ( ( A. z ( F `
 z )  e. 
_V  /\  A  e.  _V )  ->  ( A  u.  U_ x  e. 
dom  g ( F `
 ( g `  x ) ) )  e.  _V )
1716ralrimivw 2604 . . . . . 6  |-  ( ( A. z ( F `
 z )  e. 
_V  /\  A  e.  _V )  ->  A. g  e.  _V  ( A  u.  U_ x  e.  dom  g
( F `  (
g `  x )
) )  e.  _V )
18 dmmptg 5226 . . . . . 6  |-  ( A. g  e.  _V  ( A  u.  U_ x  e. 
dom  g ( F `
 ( g `  x ) ) )  e.  _V  ->  dom  ( g  e.  _V  |->  ( A  u.  U_ x  e.  dom  g ( F `
 ( g `  x ) ) ) )  =  _V )
1917, 18syl 14 . . . . 5  |-  ( ( A. z ( F `
 z )  e. 
_V  /\  A  e.  _V )  ->  dom  (
g  e.  _V  |->  ( A  u.  U_ x  e.  dom  g ( F `
 ( g `  x ) ) ) )  =  _V )
203, 19eleqtrrid 2319 . . . 4  |-  ( ( A. z ( F `
 z )  e. 
_V  /\  A  e.  _V )  ->  f  e. 
dom  ( g  e. 
_V  |->  ( A  u.  U_ x  e.  dom  g
( F `  (
g `  x )
) ) ) )
21 funfvex 5644 . . . 4  |-  ( ( Fun  ( g  e. 
_V  |->  ( A  u.  U_ x  e.  dom  g
( F `  (
g `  x )
) ) )  /\  f  e.  dom  ( g  e.  _V  |->  ( A  u.  U_ x  e. 
dom  g ( F `
 ( g `  x ) ) ) ) )  ->  (
( g  e.  _V  |->  ( A  u.  U_ x  e.  dom  g ( F `
 ( g `  x ) ) ) ) `  f )  e.  _V )
222, 20, 21sylancr 414 . . 3  |-  ( ( A. z ( F `
 z )  e. 
_V  /\  A  e.  _V )  ->  ( ( g  e.  _V  |->  ( A  u.  U_ x  e.  dom  g ( F `
 ( g `  x ) ) ) ) `  f )  e.  _V )
2322, 2jctil 312 . 2  |-  ( ( A. z ( F `
 z )  e. 
_V  /\  A  e.  _V )  ->  ( Fun  ( g  e.  _V  |->  ( A  u.  U_ x  e.  dom  g ( F `
 ( g `  x ) ) ) )  /\  ( ( g  e.  _V  |->  ( A  u.  U_ x  e.  dom  g ( F `
 ( g `  x ) ) ) ) `  f )  e.  _V ) )
241, 23sylan2 286 1  |-  ( ( A. z ( F `
 z )  e. 
_V  /\  A  e.  V )  ->  ( Fun  ( g  e.  _V  |->  ( A  u.  U_ x  e.  dom  g ( F `
 ( g `  x ) ) ) )  /\  ( ( g  e.  _V  |->  ( A  u.  U_ x  e.  dom  g ( F `
 ( g `  x ) ) ) ) `  f )  e.  _V ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104   A.wal 1393    = wceq 1395    e. wcel 2200   A.wral 2508   _Vcvv 2799    u. cun 3195   U_ciun 3965    |-> cmpt 4145   dom cdm 4719   Fun wfun 5312   ` cfv 5318
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326
This theorem is referenced by:  rdgifnon2  6526
  Copyright terms: Public domain W3C validator