| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fnpr2ob | Unicode version | ||
| Description: Biconditional version of fnpr2o 13142. (Contributed by Jim Kingdon, 27-Sep-2023.) |
| Ref | Expression |
|---|---|
| fnpr2ob |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnpr2o 13142 |
. 2
| |
| 2 | 0ex 4170 |
. . . . . . . 8
| |
| 3 | 2 | prid1 3738 |
. . . . . . 7
|
| 4 | df2o3 6515 |
. . . . . . 7
| |
| 5 | 3, 4 | eleqtrri 2280 |
. . . . . 6
|
| 6 | fndm 5372 |
. . . . . 6
| |
| 7 | 5, 6 | eleqtrrid 2294 |
. . . . 5
|
| 8 | 2 | eldm2 4875 |
. . . . 5
|
| 9 | 7, 8 | sylib 122 |
. . . 4
|
| 10 | 1n0 6517 |
. . . . . . . . . . 11
| |
| 11 | 10 | nesymi 2421 |
. . . . . . . . . 10
|
| 12 | vex 2774 |
. . . . . . . . . . 11
| |
| 13 | 2, 12 | opth1 4279 |
. . . . . . . . . 10
|
| 14 | 11, 13 | mto 663 |
. . . . . . . . 9
|
| 15 | elpri 3655 |
. . . . . . . . 9
| |
| 16 | orel2 727 |
. . . . . . . . 9
| |
| 17 | 14, 15, 16 | mpsyl 65 |
. . . . . . . 8
|
| 18 | 2, 12 | opth 4280 |
. . . . . . . 8
|
| 19 | 17, 18 | sylib 122 |
. . . . . . 7
|
| 20 | 19 | simprd 114 |
. . . . . 6
|
| 21 | 20 | eximi 1622 |
. . . . 5
|
| 22 | isset 2777 |
. . . . 5
| |
| 23 | 21, 22 | sylibr 134 |
. . . 4
|
| 24 | 9, 23 | syl 14 |
. . 3
|
| 25 | 1oex 6509 |
. . . . . . . 8
| |
| 26 | 25 | prid2 3739 |
. . . . . . 7
|
| 27 | 26, 4 | eleqtrri 2280 |
. . . . . 6
|
| 28 | 27, 6 | eleqtrrid 2294 |
. . . . 5
|
| 29 | 25 | eldm2 4875 |
. . . . 5
|
| 30 | 28, 29 | sylib 122 |
. . . 4
|
| 31 | 10 | neii 2377 |
. . . . . . . . . 10
|
| 32 | 25, 12 | opth1 4279 |
. . . . . . . . . 10
|
| 33 | 31, 32 | mto 663 |
. . . . . . . . 9
|
| 34 | elpri 3655 |
. . . . . . . . . 10
| |
| 35 | 34 | orcomd 730 |
. . . . . . . . 9
|
| 36 | orel2 727 |
. . . . . . . . 9
| |
| 37 | 33, 35, 36 | mpsyl 65 |
. . . . . . . 8
|
| 38 | 25, 12 | opth 4280 |
. . . . . . . 8
|
| 39 | 37, 38 | sylib 122 |
. . . . . . 7
|
| 40 | 39 | simprd 114 |
. . . . . 6
|
| 41 | 40 | eximi 1622 |
. . . . 5
|
| 42 | isset 2777 |
. . . . 5
| |
| 43 | 41, 42 | sylibr 134 |
. . . 4
|
| 44 | 30, 43 | syl 14 |
. . 3
|
| 45 | 24, 44 | jca 306 |
. 2
|
| 46 | 1, 45 | impbii 126 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-nul 4169 ax-pow 4217 ax-pr 4252 ax-un 4479 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-ral 2488 df-rex 2489 df-v 2773 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-br 4044 df-opab 4105 df-tr 4142 df-id 4339 df-iord 4412 df-on 4414 df-suc 4417 df-iom 4638 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-fun 5272 df-fn 5273 df-1o 6501 df-2o 6502 |
| This theorem is referenced by: xpsfrnel2 13149 |
| Copyright terms: Public domain | W3C validator |