ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fnpr2ob Unicode version

Theorem fnpr2ob 12764
Description: Biconditional version of fnpr2o 12763. (Contributed by Jim Kingdon, 27-Sep-2023.)
Assertion
Ref Expression
fnpr2ob  |-  ( ( A  e.  _V  /\  B  e.  _V )  <->  {
<. (/) ,  A >. , 
<. 1o ,  B >. }  Fn  2o )

Proof of Theorem fnpr2ob
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 fnpr2o 12763 . 2  |-  ( ( A  e.  _V  /\  B  e.  _V )  ->  { <. (/) ,  A >. , 
<. 1o ,  B >. }  Fn  2o )
2 0ex 4132 . . . . . . . 8  |-  (/)  e.  _V
32prid1 3700 . . . . . . 7  |-  (/)  e.  { (/)
,  1o }
4 df2o3 6433 . . . . . . 7  |-  2o  =  { (/) ,  1o }
53, 4eleqtrri 2253 . . . . . 6  |-  (/)  e.  2o
6 fndm 5317 . . . . . 6  |-  ( {
<. (/) ,  A >. , 
<. 1o ,  B >. }  Fn  2o  ->  dom  {
<. (/) ,  A >. , 
<. 1o ,  B >. }  =  2o )
75, 6eleqtrrid 2267 . . . . 5  |-  ( {
<. (/) ,  A >. , 
<. 1o ,  B >. }  Fn  2o  ->  (/)  e.  dom  {
<. (/) ,  A >. , 
<. 1o ,  B >. } )
82eldm2 4827 . . . . 5  |-  ( (/)  e.  dom  { <. (/) ,  A >. ,  <. 1o ,  B >. }  <->  E. k <. (/) ,  k
>.  e.  { <. (/) ,  A >. ,  <. 1o ,  B >. } )
97, 8sylib 122 . . . 4  |-  ( {
<. (/) ,  A >. , 
<. 1o ,  B >. }  Fn  2o  ->  E. k <.
(/) ,  k >.  e. 
{ <. (/) ,  A >. , 
<. 1o ,  B >. } )
10 1n0 6435 . . . . . . . . . . 11  |-  1o  =/=  (/)
1110nesymi 2393 . . . . . . . . . 10  |-  -.  (/)  =  1o
12 vex 2742 . . . . . . . . . . 11  |-  k  e. 
_V
132, 12opth1 4238 . . . . . . . . . 10  |-  ( <. (/)
,  k >.  =  <. 1o ,  B >.  ->  (/)  =  1o )
1411, 13mto 662 . . . . . . . . 9  |-  -.  <. (/)
,  k >.  =  <. 1o ,  B >.
15 elpri 3617 . . . . . . . . 9  |-  ( <. (/)
,  k >.  e.  { <.
(/) ,  A >. , 
<. 1o ,  B >. }  ->  ( <. (/) ,  k
>.  =  <. (/) ,  A >.  \/  <. (/) ,  k >.  =  <. 1o ,  B >. ) )
16 orel2 726 . . . . . . . . 9  |-  ( -. 
<. (/) ,  k >.  =  <. 1o ,  B >.  ->  ( ( <. (/)
,  k >.  =  <. (/)
,  A >.  \/  <. (/)
,  k >.  =  <. 1o ,  B >. )  -> 
<. (/) ,  k >.  =  <. (/) ,  A >. ) )
1714, 15, 16mpsyl 65 . . . . . . . 8  |-  ( <. (/)
,  k >.  e.  { <.
(/) ,  A >. , 
<. 1o ,  B >. }  ->  <. (/) ,  k >.  =  <. (/) ,  A >. )
182, 12opth 4239 . . . . . . . 8  |-  ( <. (/)
,  k >.  =  <. (/)
,  A >.  <->  ( (/)  =  (/)  /\  k  =  A ) )
1917, 18sylib 122 . . . . . . 7  |-  ( <. (/)
,  k >.  e.  { <.
(/) ,  A >. , 
<. 1o ,  B >. }  ->  ( (/)  =  (/)  /\  k  =  A ) )
2019simprd 114 . . . . . 6  |-  ( <. (/)
,  k >.  e.  { <.
(/) ,  A >. , 
<. 1o ,  B >. }  ->  k  =  A )
2120eximi 1600 . . . . 5  |-  ( E. k <. (/) ,  k >.  e.  { <. (/) ,  A >. , 
<. 1o ,  B >. }  ->  E. k  k  =  A )
22 isset 2745 . . . . 5  |-  ( A  e.  _V  <->  E. k 
k  =  A )
2321, 22sylibr 134 . . . 4  |-  ( E. k <. (/) ,  k >.  e.  { <. (/) ,  A >. , 
<. 1o ,  B >. }  ->  A  e.  _V )
249, 23syl 14 . . 3  |-  ( {
<. (/) ,  A >. , 
<. 1o ,  B >. }  Fn  2o  ->  A  e.  _V )
25 1oex 6427 . . . . . . . 8  |-  1o  e.  _V
2625prid2 3701 . . . . . . 7  |-  1o  e.  {
(/) ,  1o }
2726, 4eleqtrri 2253 . . . . . 6  |-  1o  e.  2o
2827, 6eleqtrrid 2267 . . . . 5  |-  ( {
<. (/) ,  A >. , 
<. 1o ,  B >. }  Fn  2o  ->  1o  e.  dom  { <. (/) ,  A >. ,  <. 1o ,  B >. } )
2925eldm2 4827 . . . . 5  |-  ( 1o  e.  dom  { <. (/)
,  A >. ,  <. 1o ,  B >. }  <->  E. k <. 1o ,  k >.  e.  { <. (/) ,  A >. , 
<. 1o ,  B >. } )
3028, 29sylib 122 . . . 4  |-  ( {
<. (/) ,  A >. , 
<. 1o ,  B >. }  Fn  2o  ->  E. k <. 1o ,  k >.  e.  { <. (/) ,  A >. , 
<. 1o ,  B >. } )
3110neii 2349 . . . . . . . . . 10  |-  -.  1o  =  (/)
3225, 12opth1 4238 . . . . . . . . . 10  |-  ( <. 1o ,  k >.  = 
<. (/) ,  A >.  ->  1o  =  (/) )
3331, 32mto 662 . . . . . . . . 9  |-  -.  <. 1o ,  k >.  =  <. (/)
,  A >.
34 elpri 3617 . . . . . . . . . 10  |-  ( <. 1o ,  k >.  e. 
{ <. (/) ,  A >. , 
<. 1o ,  B >. }  ->  ( <. 1o , 
k >.  =  <. (/) ,  A >.  \/  <. 1o ,  k
>.  =  <. 1o ,  B >. ) )
3534orcomd 729 . . . . . . . . 9  |-  ( <. 1o ,  k >.  e. 
{ <. (/) ,  A >. , 
<. 1o ,  B >. }  ->  ( <. 1o , 
k >.  =  <. 1o ,  B >.  \/  <. 1o , 
k >.  =  <. (/) ,  A >. ) )
36 orel2 726 . . . . . . . . 9  |-  ( -. 
<. 1o ,  k >.  =  <. (/) ,  A >.  -> 
( ( <. 1o , 
k >.  =  <. 1o ,  B >.  \/  <. 1o , 
k >.  =  <. (/) ,  A >. )  ->  <. 1o , 
k >.  =  <. 1o ,  B >. ) )
3733, 35, 36mpsyl 65 . . . . . . . 8  |-  ( <. 1o ,  k >.  e. 
{ <. (/) ,  A >. , 
<. 1o ,  B >. }  ->  <. 1o ,  k
>.  =  <. 1o ,  B >. )
3825, 12opth 4239 . . . . . . . 8  |-  ( <. 1o ,  k >.  = 
<. 1o ,  B >.  <->  ( 1o  =  1o  /\  k  =  B ) )
3937, 38sylib 122 . . . . . . 7  |-  ( <. 1o ,  k >.  e. 
{ <. (/) ,  A >. , 
<. 1o ,  B >. }  ->  ( 1o  =  1o  /\  k  =  B ) )
4039simprd 114 . . . . . 6  |-  ( <. 1o ,  k >.  e. 
{ <. (/) ,  A >. , 
<. 1o ,  B >. }  ->  k  =  B )
4140eximi 1600 . . . . 5  |-  ( E. k <. 1o ,  k
>.  e.  { <. (/) ,  A >. ,  <. 1o ,  B >. }  ->  E. k 
k  =  B )
42 isset 2745 . . . . 5  |-  ( B  e.  _V  <->  E. k 
k  =  B )
4341, 42sylibr 134 . . . 4  |-  ( E. k <. 1o ,  k
>.  e.  { <. (/) ,  A >. ,  <. 1o ,  B >. }  ->  B  e.  _V )
4430, 43syl 14 . . 3  |-  ( {
<. (/) ,  A >. , 
<. 1o ,  B >. }  Fn  2o  ->  B  e.  _V )
4524, 44jca 306 . 2  |-  ( {
<. (/) ,  A >. , 
<. 1o ,  B >. }  Fn  2o  ->  ( A  e.  _V  /\  B  e.  _V ) )
461, 45impbii 126 1  |-  ( ( A  e.  _V  /\  B  e.  _V )  <->  {
<. (/) ,  A >. , 
<. 1o ,  B >. }  Fn  2o )
Colors of variables: wff set class
Syntax hints:   -. wn 3    /\ wa 104    <-> wb 105    \/ wo 708    = wceq 1353   E.wex 1492    e. wcel 2148   _Vcvv 2739   (/)c0 3424   {cpr 3595   <.cop 3597   dom cdm 4628    Fn wfn 5213   1oc1o 6412   2oc2o 6413
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-v 2741  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-br 4006  df-opab 4067  df-tr 4104  df-id 4295  df-iord 4368  df-on 4370  df-suc 4373  df-iom 4592  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-fun 5220  df-fn 5221  df-1o 6419  df-2o 6420
This theorem is referenced by:  xpsfrnel2  12770
  Copyright terms: Public domain W3C validator