ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fnpr2ob Unicode version

Theorem fnpr2ob 13368
Description: Biconditional version of fnpr2o 13367. (Contributed by Jim Kingdon, 27-Sep-2023.)
Assertion
Ref Expression
fnpr2ob  |-  ( ( A  e.  _V  /\  B  e.  _V )  <->  {
<. (/) ,  A >. , 
<. 1o ,  B >. }  Fn  2o )

Proof of Theorem fnpr2ob
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 fnpr2o 13367 . 2  |-  ( ( A  e.  _V  /\  B  e.  _V )  ->  { <. (/) ,  A >. , 
<. 1o ,  B >. }  Fn  2o )
2 0ex 4210 . . . . . . . 8  |-  (/)  e.  _V
32prid1 3772 . . . . . . 7  |-  (/)  e.  { (/)
,  1o }
4 df2o3 6574 . . . . . . 7  |-  2o  =  { (/) ,  1o }
53, 4eleqtrri 2305 . . . . . 6  |-  (/)  e.  2o
6 fndm 5419 . . . . . 6  |-  ( {
<. (/) ,  A >. , 
<. 1o ,  B >. }  Fn  2o  ->  dom  {
<. (/) ,  A >. , 
<. 1o ,  B >. }  =  2o )
75, 6eleqtrrid 2319 . . . . 5  |-  ( {
<. (/) ,  A >. , 
<. 1o ,  B >. }  Fn  2o  ->  (/)  e.  dom  {
<. (/) ,  A >. , 
<. 1o ,  B >. } )
82eldm2 4920 . . . . 5  |-  ( (/)  e.  dom  { <. (/) ,  A >. ,  <. 1o ,  B >. }  <->  E. k <. (/) ,  k
>.  e.  { <. (/) ,  A >. ,  <. 1o ,  B >. } )
97, 8sylib 122 . . . 4  |-  ( {
<. (/) ,  A >. , 
<. 1o ,  B >. }  Fn  2o  ->  E. k <.
(/) ,  k >.  e. 
{ <. (/) ,  A >. , 
<. 1o ,  B >. } )
10 1n0 6576 . . . . . . . . . . 11  |-  1o  =/=  (/)
1110nesymi 2446 . . . . . . . . . 10  |-  -.  (/)  =  1o
12 vex 2802 . . . . . . . . . . 11  |-  k  e. 
_V
132, 12opth1 4321 . . . . . . . . . 10  |-  ( <. (/)
,  k >.  =  <. 1o ,  B >.  ->  (/)  =  1o )
1411, 13mto 666 . . . . . . . . 9  |-  -.  <. (/)
,  k >.  =  <. 1o ,  B >.
15 elpri 3689 . . . . . . . . 9  |-  ( <. (/)
,  k >.  e.  { <.
(/) ,  A >. , 
<. 1o ,  B >. }  ->  ( <. (/) ,  k
>.  =  <. (/) ,  A >.  \/  <. (/) ,  k >.  =  <. 1o ,  B >. ) )
16 orel2 731 . . . . . . . . 9  |-  ( -. 
<. (/) ,  k >.  =  <. 1o ,  B >.  ->  ( ( <. (/)
,  k >.  =  <. (/)
,  A >.  \/  <. (/)
,  k >.  =  <. 1o ,  B >. )  -> 
<. (/) ,  k >.  =  <. (/) ,  A >. ) )
1714, 15, 16mpsyl 65 . . . . . . . 8  |-  ( <. (/)
,  k >.  e.  { <.
(/) ,  A >. , 
<. 1o ,  B >. }  ->  <. (/) ,  k >.  =  <. (/) ,  A >. )
182, 12opth 4322 . . . . . . . 8  |-  ( <. (/)
,  k >.  =  <. (/)
,  A >.  <->  ( (/)  =  (/)  /\  k  =  A ) )
1917, 18sylib 122 . . . . . . 7  |-  ( <. (/)
,  k >.  e.  { <.
(/) ,  A >. , 
<. 1o ,  B >. }  ->  ( (/)  =  (/)  /\  k  =  A ) )
2019simprd 114 . . . . . 6  |-  ( <. (/)
,  k >.  e.  { <.
(/) ,  A >. , 
<. 1o ,  B >. }  ->  k  =  A )
2120eximi 1646 . . . . 5  |-  ( E. k <. (/) ,  k >.  e.  { <. (/) ,  A >. , 
<. 1o ,  B >. }  ->  E. k  k  =  A )
22 isset 2806 . . . . 5  |-  ( A  e.  _V  <->  E. k 
k  =  A )
2321, 22sylibr 134 . . . 4  |-  ( E. k <. (/) ,  k >.  e.  { <. (/) ,  A >. , 
<. 1o ,  B >. }  ->  A  e.  _V )
249, 23syl 14 . . 3  |-  ( {
<. (/) ,  A >. , 
<. 1o ,  B >. }  Fn  2o  ->  A  e.  _V )
25 1oex 6568 . . . . . . . 8  |-  1o  e.  _V
2625prid2 3773 . . . . . . 7  |-  1o  e.  {
(/) ,  1o }
2726, 4eleqtrri 2305 . . . . . 6  |-  1o  e.  2o
2827, 6eleqtrrid 2319 . . . . 5  |-  ( {
<. (/) ,  A >. , 
<. 1o ,  B >. }  Fn  2o  ->  1o  e.  dom  { <. (/) ,  A >. ,  <. 1o ,  B >. } )
2925eldm2 4920 . . . . 5  |-  ( 1o  e.  dom  { <. (/)
,  A >. ,  <. 1o ,  B >. }  <->  E. k <. 1o ,  k >.  e.  { <. (/) ,  A >. , 
<. 1o ,  B >. } )
3028, 29sylib 122 . . . 4  |-  ( {
<. (/) ,  A >. , 
<. 1o ,  B >. }  Fn  2o  ->  E. k <. 1o ,  k >.  e.  { <. (/) ,  A >. , 
<. 1o ,  B >. } )
3110neii 2402 . . . . . . . . . 10  |-  -.  1o  =  (/)
3225, 12opth1 4321 . . . . . . . . . 10  |-  ( <. 1o ,  k >.  = 
<. (/) ,  A >.  ->  1o  =  (/) )
3331, 32mto 666 . . . . . . . . 9  |-  -.  <. 1o ,  k >.  =  <. (/)
,  A >.
34 elpri 3689 . . . . . . . . . 10  |-  ( <. 1o ,  k >.  e. 
{ <. (/) ,  A >. , 
<. 1o ,  B >. }  ->  ( <. 1o , 
k >.  =  <. (/) ,  A >.  \/  <. 1o ,  k
>.  =  <. 1o ,  B >. ) )
3534orcomd 734 . . . . . . . . 9  |-  ( <. 1o ,  k >.  e. 
{ <. (/) ,  A >. , 
<. 1o ,  B >. }  ->  ( <. 1o , 
k >.  =  <. 1o ,  B >.  \/  <. 1o , 
k >.  =  <. (/) ,  A >. ) )
36 orel2 731 . . . . . . . . 9  |-  ( -. 
<. 1o ,  k >.  =  <. (/) ,  A >.  -> 
( ( <. 1o , 
k >.  =  <. 1o ,  B >.  \/  <. 1o , 
k >.  =  <. (/) ,  A >. )  ->  <. 1o , 
k >.  =  <. 1o ,  B >. ) )
3733, 35, 36mpsyl 65 . . . . . . . 8  |-  ( <. 1o ,  k >.  e. 
{ <. (/) ,  A >. , 
<. 1o ,  B >. }  ->  <. 1o ,  k
>.  =  <. 1o ,  B >. )
3825, 12opth 4322 . . . . . . . 8  |-  ( <. 1o ,  k >.  = 
<. 1o ,  B >.  <->  ( 1o  =  1o  /\  k  =  B ) )
3937, 38sylib 122 . . . . . . 7  |-  ( <. 1o ,  k >.  e. 
{ <. (/) ,  A >. , 
<. 1o ,  B >. }  ->  ( 1o  =  1o  /\  k  =  B ) )
4039simprd 114 . . . . . 6  |-  ( <. 1o ,  k >.  e. 
{ <. (/) ,  A >. , 
<. 1o ,  B >. }  ->  k  =  B )
4140eximi 1646 . . . . 5  |-  ( E. k <. 1o ,  k
>.  e.  { <. (/) ,  A >. ,  <. 1o ,  B >. }  ->  E. k 
k  =  B )
42 isset 2806 . . . . 5  |-  ( B  e.  _V  <->  E. k 
k  =  B )
4341, 42sylibr 134 . . . 4  |-  ( E. k <. 1o ,  k
>.  e.  { <. (/) ,  A >. ,  <. 1o ,  B >. }  ->  B  e.  _V )
4430, 43syl 14 . . 3  |-  ( {
<. (/) ,  A >. , 
<. 1o ,  B >. }  Fn  2o  ->  B  e.  _V )
4524, 44jca 306 . 2  |-  ( {
<. (/) ,  A >. , 
<. 1o ,  B >. }  Fn  2o  ->  ( A  e.  _V  /\  B  e.  _V ) )
461, 45impbii 126 1  |-  ( ( A  e.  _V  /\  B  e.  _V )  <->  {
<. (/) ,  A >. , 
<. 1o ,  B >. }  Fn  2o )
Colors of variables: wff set class
Syntax hints:   -. wn 3    /\ wa 104    <-> wb 105    \/ wo 713    = wceq 1395   E.wex 1538    e. wcel 2200   _Vcvv 2799   (/)c0 3491   {cpr 3667   <.cop 3669   dom cdm 4718    Fn wfn 5312   1oc1o 6553   2oc2o 6554
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-v 2801  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-br 4083  df-opab 4145  df-tr 4182  df-id 4383  df-iord 4456  df-on 4458  df-suc 4461  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-fun 5319  df-fn 5320  df-1o 6560  df-2o 6561
This theorem is referenced by:  xpsfrnel2  13374
  Copyright terms: Public domain W3C validator