| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fnpr2ob | Unicode version | ||
| Description: Biconditional version of fnpr2o 13367. (Contributed by Jim Kingdon, 27-Sep-2023.) |
| Ref | Expression |
|---|---|
| fnpr2ob |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnpr2o 13367 |
. 2
| |
| 2 | 0ex 4210 |
. . . . . . . 8
| |
| 3 | 2 | prid1 3772 |
. . . . . . 7
|
| 4 | df2o3 6574 |
. . . . . . 7
| |
| 5 | 3, 4 | eleqtrri 2305 |
. . . . . 6
|
| 6 | fndm 5419 |
. . . . . 6
| |
| 7 | 5, 6 | eleqtrrid 2319 |
. . . . 5
|
| 8 | 2 | eldm2 4920 |
. . . . 5
|
| 9 | 7, 8 | sylib 122 |
. . . 4
|
| 10 | 1n0 6576 |
. . . . . . . . . . 11
| |
| 11 | 10 | nesymi 2446 |
. . . . . . . . . 10
|
| 12 | vex 2802 |
. . . . . . . . . . 11
| |
| 13 | 2, 12 | opth1 4321 |
. . . . . . . . . 10
|
| 14 | 11, 13 | mto 666 |
. . . . . . . . 9
|
| 15 | elpri 3689 |
. . . . . . . . 9
| |
| 16 | orel2 731 |
. . . . . . . . 9
| |
| 17 | 14, 15, 16 | mpsyl 65 |
. . . . . . . 8
|
| 18 | 2, 12 | opth 4322 |
. . . . . . . 8
|
| 19 | 17, 18 | sylib 122 |
. . . . . . 7
|
| 20 | 19 | simprd 114 |
. . . . . 6
|
| 21 | 20 | eximi 1646 |
. . . . 5
|
| 22 | isset 2806 |
. . . . 5
| |
| 23 | 21, 22 | sylibr 134 |
. . . 4
|
| 24 | 9, 23 | syl 14 |
. . 3
|
| 25 | 1oex 6568 |
. . . . . . . 8
| |
| 26 | 25 | prid2 3773 |
. . . . . . 7
|
| 27 | 26, 4 | eleqtrri 2305 |
. . . . . 6
|
| 28 | 27, 6 | eleqtrrid 2319 |
. . . . 5
|
| 29 | 25 | eldm2 4920 |
. . . . 5
|
| 30 | 28, 29 | sylib 122 |
. . . 4
|
| 31 | 10 | neii 2402 |
. . . . . . . . . 10
|
| 32 | 25, 12 | opth1 4321 |
. . . . . . . . . 10
|
| 33 | 31, 32 | mto 666 |
. . . . . . . . 9
|
| 34 | elpri 3689 |
. . . . . . . . . 10
| |
| 35 | 34 | orcomd 734 |
. . . . . . . . 9
|
| 36 | orel2 731 |
. . . . . . . . 9
| |
| 37 | 33, 35, 36 | mpsyl 65 |
. . . . . . . 8
|
| 38 | 25, 12 | opth 4322 |
. . . . . . . 8
|
| 39 | 37, 38 | sylib 122 |
. . . . . . 7
|
| 40 | 39 | simprd 114 |
. . . . . 6
|
| 41 | 40 | eximi 1646 |
. . . . 5
|
| 42 | isset 2806 |
. . . . 5
| |
| 43 | 41, 42 | sylibr 134 |
. . . 4
|
| 44 | 30, 43 | syl 14 |
. . 3
|
| 45 | 24, 44 | jca 306 |
. 2
|
| 46 | 1, 45 | impbii 126 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4523 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-br 4083 df-opab 4145 df-tr 4182 df-id 4383 df-iord 4456 df-on 4458 df-suc 4461 df-iom 4682 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-fun 5319 df-fn 5320 df-1o 6560 df-2o 6561 |
| This theorem is referenced by: xpsfrnel2 13374 |
| Copyright terms: Public domain | W3C validator |