| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fnpr2ob | Unicode version | ||
| Description: Biconditional version of fnpr2o 13171. (Contributed by Jim Kingdon, 27-Sep-2023.) |
| Ref | Expression |
|---|---|
| fnpr2ob |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnpr2o 13171 |
. 2
| |
| 2 | 0ex 4171 |
. . . . . . . 8
| |
| 3 | 2 | prid1 3739 |
. . . . . . 7
|
| 4 | df2o3 6516 |
. . . . . . 7
| |
| 5 | 3, 4 | eleqtrri 2281 |
. . . . . 6
|
| 6 | fndm 5373 |
. . . . . 6
| |
| 7 | 5, 6 | eleqtrrid 2295 |
. . . . 5
|
| 8 | 2 | eldm2 4876 |
. . . . 5
|
| 9 | 7, 8 | sylib 122 |
. . . 4
|
| 10 | 1n0 6518 |
. . . . . . . . . . 11
| |
| 11 | 10 | nesymi 2422 |
. . . . . . . . . 10
|
| 12 | vex 2775 |
. . . . . . . . . . 11
| |
| 13 | 2, 12 | opth1 4280 |
. . . . . . . . . 10
|
| 14 | 11, 13 | mto 664 |
. . . . . . . . 9
|
| 15 | elpri 3656 |
. . . . . . . . 9
| |
| 16 | orel2 728 |
. . . . . . . . 9
| |
| 17 | 14, 15, 16 | mpsyl 65 |
. . . . . . . 8
|
| 18 | 2, 12 | opth 4281 |
. . . . . . . 8
|
| 19 | 17, 18 | sylib 122 |
. . . . . . 7
|
| 20 | 19 | simprd 114 |
. . . . . 6
|
| 21 | 20 | eximi 1623 |
. . . . 5
|
| 22 | isset 2778 |
. . . . 5
| |
| 23 | 21, 22 | sylibr 134 |
. . . 4
|
| 24 | 9, 23 | syl 14 |
. . 3
|
| 25 | 1oex 6510 |
. . . . . . . 8
| |
| 26 | 25 | prid2 3740 |
. . . . . . 7
|
| 27 | 26, 4 | eleqtrri 2281 |
. . . . . 6
|
| 28 | 27, 6 | eleqtrrid 2295 |
. . . . 5
|
| 29 | 25 | eldm2 4876 |
. . . . 5
|
| 30 | 28, 29 | sylib 122 |
. . . 4
|
| 31 | 10 | neii 2378 |
. . . . . . . . . 10
|
| 32 | 25, 12 | opth1 4280 |
. . . . . . . . . 10
|
| 33 | 31, 32 | mto 664 |
. . . . . . . . 9
|
| 34 | elpri 3656 |
. . . . . . . . . 10
| |
| 35 | 34 | orcomd 731 |
. . . . . . . . 9
|
| 36 | orel2 728 |
. . . . . . . . 9
| |
| 37 | 33, 35, 36 | mpsyl 65 |
. . . . . . . 8
|
| 38 | 25, 12 | opth 4281 |
. . . . . . . 8
|
| 39 | 37, 38 | sylib 122 |
. . . . . . 7
|
| 40 | 39 | simprd 114 |
. . . . . 6
|
| 41 | 40 | eximi 1623 |
. . . . 5
|
| 42 | isset 2778 |
. . . . 5
| |
| 43 | 41, 42 | sylibr 134 |
. . . 4
|
| 44 | 30, 43 | syl 14 |
. . 3
|
| 45 | 24, 44 | jca 306 |
. 2
|
| 46 | 1, 45 | impbii 126 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-nul 4170 ax-pow 4218 ax-pr 4253 ax-un 4480 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-ral 2489 df-rex 2490 df-v 2774 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-br 4045 df-opab 4106 df-tr 4143 df-id 4340 df-iord 4413 df-on 4415 df-suc 4418 df-iom 4639 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-fun 5273 df-fn 5274 df-1o 6502 df-2o 6503 |
| This theorem is referenced by: xpsfrnel2 13178 |
| Copyright terms: Public domain | W3C validator |