Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > rdgruledefgg | Unicode version |
Description: The recursion rule for the recursive definition generator is defined everywhere. (Contributed by Jim Kingdon, 4-Jul-2019.) |
Ref | Expression |
---|---|
rdgruledefgg |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 2723 | . 2 | |
2 | funmpt 5205 | . . . 4 | |
3 | vex 2715 | . . . . 5 | |
4 | vex 2715 | . . . . . . . . . . . . 13 | |
5 | vex 2715 | . . . . . . . . . . . . 13 | |
6 | 4, 5 | fvex 5485 | . . . . . . . . . . . 12 |
7 | funfvex 5482 | . . . . . . . . . . . . 13 | |
8 | 7 | funfni 5267 | . . . . . . . . . . . 12 |
9 | 6, 8 | mpan2 422 | . . . . . . . . . . 11 |
10 | 9 | ralrimivw 2531 | . . . . . . . . . 10 |
11 | 4 | dmex 4849 | . . . . . . . . . . 11 |
12 | iunexg 6061 | . . . . . . . . . . 11 | |
13 | 11, 12 | mpan 421 | . . . . . . . . . 10 |
14 | 10, 13 | syl 14 | . . . . . . . . 9 |
15 | unexg 4401 | . . . . . . . . 9 | |
16 | 14, 15 | sylan2 284 | . . . . . . . 8 |
17 | 16 | ancoms 266 | . . . . . . 7 |
18 | 17 | ralrimivw 2531 | . . . . . 6 |
19 | dmmptg 5080 | . . . . . 6 | |
20 | 18, 19 | syl 14 | . . . . 5 |
21 | 3, 20 | eleqtrrid 2247 | . . . 4 |
22 | funfvex 5482 | . . . 4 | |
23 | 2, 21, 22 | sylancr 411 | . . 3 |
24 | 23, 2 | jctil 310 | . 2 |
25 | 1, 24 | sylan2 284 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1335 wcel 2128 wral 2435 cvv 2712 cun 3100 ciun 3849 cmpt 4025 cdm 4583 wfun 5161 wfn 5162 cfv 5167 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-coll 4079 ax-sep 4082 ax-pow 4134 ax-pr 4168 ax-un 4392 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ral 2440 df-rex 2441 df-reu 2442 df-rab 2444 df-v 2714 df-sbc 2938 df-csb 3032 df-un 3106 df-in 3108 df-ss 3115 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-iun 3851 df-br 3966 df-opab 4026 df-mpt 4027 df-id 4252 df-xp 4589 df-rel 4590 df-cnv 4591 df-co 4592 df-dm 4593 df-rn 4594 df-res 4595 df-ima 4596 df-iota 5132 df-fun 5169 df-fn 5170 df-f 5171 df-f1 5172 df-fo 5173 df-f1o 5174 df-fv 5175 |
This theorem is referenced by: rdgruledefg 6317 rdgexggg 6318 rdgifnon 6320 rdgivallem 6322 |
Copyright terms: Public domain | W3C validator |