| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rdgruledefgg | Unicode version | ||
| Description: The recursion rule for the recursive definition generator is defined everywhere. (Contributed by Jim Kingdon, 4-Jul-2019.) |
| Ref | Expression |
|---|---|
| rdgruledefgg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 2783 |
. 2
| |
| 2 | funmpt 5309 |
. . . 4
| |
| 3 | vex 2775 |
. . . . 5
| |
| 4 | vex 2775 |
. . . . . . . . . . . . 13
| |
| 5 | vex 2775 |
. . . . . . . . . . . . 13
| |
| 6 | 4, 5 | fvex 5596 |
. . . . . . . . . . . 12
|
| 7 | funfvex 5593 |
. . . . . . . . . . . . 13
| |
| 8 | 7 | funfni 5376 |
. . . . . . . . . . . 12
|
| 9 | 6, 8 | mpan2 425 |
. . . . . . . . . . 11
|
| 10 | 9 | ralrimivw 2580 |
. . . . . . . . . 10
|
| 11 | 4 | dmex 4945 |
. . . . . . . . . . 11
|
| 12 | iunexg 6204 |
. . . . . . . . . . 11
| |
| 13 | 11, 12 | mpan 424 |
. . . . . . . . . 10
|
| 14 | 10, 13 | syl 14 |
. . . . . . . . 9
|
| 15 | unexg 4490 |
. . . . . . . . 9
| |
| 16 | 14, 15 | sylan2 286 |
. . . . . . . 8
|
| 17 | 16 | ancoms 268 |
. . . . . . 7
|
| 18 | 17 | ralrimivw 2580 |
. . . . . 6
|
| 19 | dmmptg 5180 |
. . . . . 6
| |
| 20 | 18, 19 | syl 14 |
. . . . 5
|
| 21 | 3, 20 | eleqtrrid 2295 |
. . . 4
|
| 22 | funfvex 5593 |
. . . 4
| |
| 23 | 2, 21, 22 | sylancr 414 |
. . 3
|
| 24 | 23, 2 | jctil 312 |
. 2
|
| 25 | 1, 24 | sylan2 286 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-coll 4159 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-un 4480 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-reu 2491 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-iun 3929 df-br 4045 df-opab 4106 df-mpt 4107 df-id 4340 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-f1 5276 df-fo 5277 df-f1o 5278 df-fv 5279 |
| This theorem is referenced by: rdgruledefg 6462 rdgexggg 6463 rdgifnon 6465 rdgivallem 6467 |
| Copyright terms: Public domain | W3C validator |