ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rdgruledefgg Unicode version

Theorem rdgruledefgg 6395
Description: The recursion rule for the recursive definition generator is defined everywhere. (Contributed by Jim Kingdon, 4-Jul-2019.)
Assertion
Ref Expression
rdgruledefgg  |-  ( ( F  Fn  _V  /\  A  e.  V )  ->  ( Fun  ( g  e.  _V  |->  ( A  u.  U_ x  e. 
dom  g ( F `
 ( g `  x ) ) ) )  /\  ( ( g  e.  _V  |->  ( A  u.  U_ x  e.  dom  g ( F `
 ( g `  x ) ) ) ) `  f )  e.  _V ) )
Distinct variable groups:    A, g    x, g, F
Allowed substitution hints:    A( x, f)    F( f)    V( x, f, g)

Proof of Theorem rdgruledefgg
StepHypRef Expression
1 elex 2763 . 2  |-  ( A  e.  V  ->  A  e.  _V )
2 funmpt 5270 . . . 4  |-  Fun  (
g  e.  _V  |->  ( A  u.  U_ x  e.  dom  g ( F `
 ( g `  x ) ) ) )
3 vex 2755 . . . . 5  |-  f  e. 
_V
4 vex 2755 . . . . . . . . . . . . 13  |-  g  e. 
_V
5 vex 2755 . . . . . . . . . . . . 13  |-  x  e. 
_V
64, 5fvex 5551 . . . . . . . . . . . 12  |-  ( g `
 x )  e. 
_V
7 funfvex 5548 . . . . . . . . . . . . 13  |-  ( ( Fun  F  /\  (
g `  x )  e.  dom  F )  -> 
( F `  (
g `  x )
)  e.  _V )
87funfni 5332 . . . . . . . . . . . 12  |-  ( ( F  Fn  _V  /\  ( g `  x
)  e.  _V )  ->  ( F `  (
g `  x )
)  e.  _V )
96, 8mpan2 425 . . . . . . . . . . 11  |-  ( F  Fn  _V  ->  ( F `  ( g `  x ) )  e. 
_V )
109ralrimivw 2564 . . . . . . . . . 10  |-  ( F  Fn  _V  ->  A. x  e.  dom  g ( F `
 ( g `  x ) )  e. 
_V )
114dmex 4908 . . . . . . . . . . 11  |-  dom  g  e.  _V
12 iunexg 6139 . . . . . . . . . . 11  |-  ( ( dom  g  e.  _V  /\ 
A. x  e.  dom  g ( F `  ( g `  x
) )  e.  _V )  ->  U_ x  e.  dom  g ( F `  ( g `  x
) )  e.  _V )
1311, 12mpan 424 . . . . . . . . . 10  |-  ( A. x  e.  dom  g ( F `  ( g `
 x ) )  e.  _V  ->  U_ x  e.  dom  g ( F `
 ( g `  x ) )  e. 
_V )
1410, 13syl 14 . . . . . . . . 9  |-  ( F  Fn  _V  ->  U_ x  e.  dom  g ( F `
 ( g `  x ) )  e. 
_V )
15 unexg 4458 . . . . . . . . 9  |-  ( ( A  e.  _V  /\  U_ x  e.  dom  g
( F `  (
g `  x )
)  e.  _V )  ->  ( A  u.  U_ x  e.  dom  g ( F `  ( g `
 x ) ) )  e.  _V )
1614, 15sylan2 286 . . . . . . . 8  |-  ( ( A  e.  _V  /\  F  Fn  _V )  ->  ( A  u.  U_ x  e.  dom  g ( F `  ( g `
 x ) ) )  e.  _V )
1716ancoms 268 . . . . . . 7  |-  ( ( F  Fn  _V  /\  A  e.  _V )  ->  ( A  u.  U_ x  e.  dom  g ( F `  ( g `
 x ) ) )  e.  _V )
1817ralrimivw 2564 . . . . . 6  |-  ( ( F  Fn  _V  /\  A  e.  _V )  ->  A. g  e.  _V  ( A  u.  U_ x  e.  dom  g ( F `
 ( g `  x ) ) )  e.  _V )
19 dmmptg 5141 . . . . . 6  |-  ( A. g  e.  _V  ( A  u.  U_ x  e. 
dom  g ( F `
 ( g `  x ) ) )  e.  _V  ->  dom  ( g  e.  _V  |->  ( A  u.  U_ x  e.  dom  g ( F `
 ( g `  x ) ) ) )  =  _V )
2018, 19syl 14 . . . . 5  |-  ( ( F  Fn  _V  /\  A  e.  _V )  ->  dom  ( g  e. 
_V  |->  ( A  u.  U_ x  e.  dom  g
( F `  (
g `  x )
) ) )  =  _V )
213, 20eleqtrrid 2279 . . . 4  |-  ( ( F  Fn  _V  /\  A  e.  _V )  ->  f  e.  dom  (
g  e.  _V  |->  ( A  u.  U_ x  e.  dom  g ( F `
 ( g `  x ) ) ) ) )
22 funfvex 5548 . . . 4  |-  ( ( Fun  ( g  e. 
_V  |->  ( A  u.  U_ x  e.  dom  g
( F `  (
g `  x )
) ) )  /\  f  e.  dom  ( g  e.  _V  |->  ( A  u.  U_ x  e. 
dom  g ( F `
 ( g `  x ) ) ) ) )  ->  (
( g  e.  _V  |->  ( A  u.  U_ x  e.  dom  g ( F `
 ( g `  x ) ) ) ) `  f )  e.  _V )
232, 21, 22sylancr 414 . . 3  |-  ( ( F  Fn  _V  /\  A  e.  _V )  ->  ( ( g  e. 
_V  |->  ( A  u.  U_ x  e.  dom  g
( F `  (
g `  x )
) ) ) `  f )  e.  _V )
2423, 2jctil 312 . 2  |-  ( ( F  Fn  _V  /\  A  e.  _V )  ->  ( Fun  ( g  e.  _V  |->  ( A  u.  U_ x  e. 
dom  g ( F `
 ( g `  x ) ) ) )  /\  ( ( g  e.  _V  |->  ( A  u.  U_ x  e.  dom  g ( F `
 ( g `  x ) ) ) ) `  f )  e.  _V ) )
251, 24sylan2 286 1  |-  ( ( F  Fn  _V  /\  A  e.  V )  ->  ( Fun  ( g  e.  _V  |->  ( A  u.  U_ x  e. 
dom  g ( F `
 ( g `  x ) ) ) )  /\  ( ( g  e.  _V  |->  ( A  u.  U_ x  e.  dom  g ( F `
 ( g `  x ) ) ) ) `  f )  e.  _V ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2160   A.wral 2468   _Vcvv 2752    u. cun 3142   U_ciun 3901    |-> cmpt 4079   dom cdm 4641   Fun wfun 5226    Fn wfn 5227   ` cfv 5232
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-pow 4189  ax-pr 4224  ax-un 4448
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ral 2473  df-rex 2474  df-reu 2475  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-id 4308  df-xp 4647  df-rel 4648  df-cnv 4649  df-co 4650  df-dm 4651  df-rn 4652  df-res 4653  df-ima 4654  df-iota 5193  df-fun 5234  df-fn 5235  df-f 5236  df-f1 5237  df-fo 5238  df-f1o 5239  df-fv 5240
This theorem is referenced by:  rdgruledefg  6396  rdgexggg  6397  rdgifnon  6399  rdgivallem  6401
  Copyright terms: Public domain W3C validator