Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > rdgruledefgg | Unicode version |
Description: The recursion rule for the recursive definition generator is defined everywhere. (Contributed by Jim Kingdon, 4-Jul-2019.) |
Ref | Expression |
---|---|
rdgruledefgg |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 2741 | . 2 | |
2 | funmpt 5236 | . . . 4 | |
3 | vex 2733 | . . . . 5 | |
4 | vex 2733 | . . . . . . . . . . . . 13 | |
5 | vex 2733 | . . . . . . . . . . . . 13 | |
6 | 4, 5 | fvex 5516 | . . . . . . . . . . . 12 |
7 | funfvex 5513 | . . . . . . . . . . . . 13 | |
8 | 7 | funfni 5298 | . . . . . . . . . . . 12 |
9 | 6, 8 | mpan2 423 | . . . . . . . . . . 11 |
10 | 9 | ralrimivw 2544 | . . . . . . . . . 10 |
11 | 4 | dmex 4877 | . . . . . . . . . . 11 |
12 | iunexg 6098 | . . . . . . . . . . 11 | |
13 | 11, 12 | mpan 422 | . . . . . . . . . 10 |
14 | 10, 13 | syl 14 | . . . . . . . . 9 |
15 | unexg 4428 | . . . . . . . . 9 | |
16 | 14, 15 | sylan2 284 | . . . . . . . 8 |
17 | 16 | ancoms 266 | . . . . . . 7 |
18 | 17 | ralrimivw 2544 | . . . . . 6 |
19 | dmmptg 5108 | . . . . . 6 | |
20 | 18, 19 | syl 14 | . . . . 5 |
21 | 3, 20 | eleqtrrid 2260 | . . . 4 |
22 | funfvex 5513 | . . . 4 | |
23 | 2, 21, 22 | sylancr 412 | . . 3 |
24 | 23, 2 | jctil 310 | . 2 |
25 | 1, 24 | sylan2 284 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1348 wcel 2141 wral 2448 cvv 2730 cun 3119 ciun 3873 cmpt 4050 cdm 4611 wfun 5192 wfn 5193 cfv 5198 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4104 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 |
This theorem is referenced by: rdgruledefg 6355 rdgexggg 6356 rdgifnon 6358 rdgivallem 6360 |
Copyright terms: Public domain | W3C validator |