| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rdgruledefgg | Unicode version | ||
| Description: The recursion rule for the recursive definition generator is defined everywhere. (Contributed by Jim Kingdon, 4-Jul-2019.) |
| Ref | Expression |
|---|---|
| rdgruledefgg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 2788 |
. 2
| |
| 2 | funmpt 5328 |
. . . 4
| |
| 3 | vex 2779 |
. . . . 5
| |
| 4 | vex 2779 |
. . . . . . . . . . . . 13
| |
| 5 | vex 2779 |
. . . . . . . . . . . . 13
| |
| 6 | 4, 5 | fvex 5619 |
. . . . . . . . . . . 12
|
| 7 | funfvex 5616 |
. . . . . . . . . . . . 13
| |
| 8 | 7 | funfni 5395 |
. . . . . . . . . . . 12
|
| 9 | 6, 8 | mpan2 425 |
. . . . . . . . . . 11
|
| 10 | 9 | ralrimivw 2582 |
. . . . . . . . . 10
|
| 11 | 4 | dmex 4964 |
. . . . . . . . . . 11
|
| 12 | iunexg 6227 |
. . . . . . . . . . 11
| |
| 13 | 11, 12 | mpan 424 |
. . . . . . . . . 10
|
| 14 | 10, 13 | syl 14 |
. . . . . . . . 9
|
| 15 | unexg 4508 |
. . . . . . . . 9
| |
| 16 | 14, 15 | sylan2 286 |
. . . . . . . 8
|
| 17 | 16 | ancoms 268 |
. . . . . . 7
|
| 18 | 17 | ralrimivw 2582 |
. . . . . 6
|
| 19 | dmmptg 5199 |
. . . . . 6
| |
| 20 | 18, 19 | syl 14 |
. . . . 5
|
| 21 | 3, 20 | eleqtrrid 2297 |
. . . 4
|
| 22 | funfvex 5616 |
. . . 4
| |
| 23 | 2, 21, 22 | sylancr 414 |
. . 3
|
| 24 | 23, 2 | jctil 312 |
. 2
|
| 25 | 1, 24 | sylan2 286 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-coll 4175 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-reu 2493 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 |
| This theorem is referenced by: rdgruledefg 6485 rdgexggg 6486 rdgifnon 6488 rdgivallem 6490 |
| Copyright terms: Public domain | W3C validator |