Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > rdgruledefgg | Unicode version |
Description: The recursion rule for the recursive definition generator is defined everywhere. (Contributed by Jim Kingdon, 4-Jul-2019.) |
Ref | Expression |
---|---|
rdgruledefgg |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 2737 | . 2 | |
2 | funmpt 5226 | . . . 4 | |
3 | vex 2729 | . . . . 5 | |
4 | vex 2729 | . . . . . . . . . . . . 13 | |
5 | vex 2729 | . . . . . . . . . . . . 13 | |
6 | 4, 5 | fvex 5506 | . . . . . . . . . . . 12 |
7 | funfvex 5503 | . . . . . . . . . . . . 13 | |
8 | 7 | funfni 5288 | . . . . . . . . . . . 12 |
9 | 6, 8 | mpan2 422 | . . . . . . . . . . 11 |
10 | 9 | ralrimivw 2540 | . . . . . . . . . 10 |
11 | 4 | dmex 4870 | . . . . . . . . . . 11 |
12 | iunexg 6087 | . . . . . . . . . . 11 | |
13 | 11, 12 | mpan 421 | . . . . . . . . . 10 |
14 | 10, 13 | syl 14 | . . . . . . . . 9 |
15 | unexg 4421 | . . . . . . . . 9 | |
16 | 14, 15 | sylan2 284 | . . . . . . . 8 |
17 | 16 | ancoms 266 | . . . . . . 7 |
18 | 17 | ralrimivw 2540 | . . . . . 6 |
19 | dmmptg 5101 | . . . . . 6 | |
20 | 18, 19 | syl 14 | . . . . 5 |
21 | 3, 20 | eleqtrrid 2256 | . . . 4 |
22 | funfvex 5503 | . . . 4 | |
23 | 2, 21, 22 | sylancr 411 | . . 3 |
24 | 23, 2 | jctil 310 | . 2 |
25 | 1, 24 | sylan2 284 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1343 wcel 2136 wral 2444 cvv 2726 cun 3114 ciun 3866 cmpt 4043 cdm 4604 wfun 5182 wfn 5183 cfv 5188 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 |
This theorem is referenced by: rdgruledefg 6344 rdgexggg 6345 rdgifnon 6347 rdgivallem 6349 |
Copyright terms: Public domain | W3C validator |