ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eluniab Unicode version

Theorem eluniab 3756
Description: Membership in union of a class abstraction. (Contributed by NM, 11-Aug-1994.) (Revised by Mario Carneiro, 14-Nov-2016.)
Assertion
Ref Expression
eluniab  |-  ( A  e.  U. { x  |  ph }  <->  E. x
( A  e.  x  /\  ph ) )
Distinct variable group:    x, A
Allowed substitution hint:    ph( x)

Proof of Theorem eluniab
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 eluni 3747 . 2  |-  ( A  e.  U. { x  |  ph }  <->  E. y
( A  e.  y  /\  y  e.  {
x  |  ph }
) )
2 nfv 1509 . . . 4  |-  F/ x  A  e.  y
3 nfsab1 2130 . . . 4  |-  F/ x  y  e.  { x  |  ph }
42, 3nfan 1545 . . 3  |-  F/ x
( A  e.  y  /\  y  e.  {
x  |  ph }
)
5 nfv 1509 . . 3  |-  F/ y ( A  e.  x  /\  ph )
6 eleq2 2204 . . . 4  |-  ( y  =  x  ->  ( A  e.  y  <->  A  e.  x ) )
7 eleq1 2203 . . . . 5  |-  ( y  =  x  ->  (
y  e.  { x  |  ph }  <->  x  e.  { x  |  ph }
) )
8 abid 2128 . . . . 5  |-  ( x  e.  { x  | 
ph }  <->  ph )
97, 8syl6bb 195 . . . 4  |-  ( y  =  x  ->  (
y  e.  { x  |  ph }  <->  ph ) )
106, 9anbi12d 465 . . 3  |-  ( y  =  x  ->  (
( A  e.  y  /\  y  e.  {
x  |  ph }
)  <->  ( A  e.  x  /\  ph )
) )
114, 5, 10cbvex 1730 . 2  |-  ( E. y ( A  e.  y  /\  y  e. 
{ x  |  ph } )  <->  E. x
( A  e.  x  /\  ph ) )
121, 11bitri 183 1  |-  ( A  e.  U. { x  |  ph }  <->  E. x
( A  e.  x  /\  ph ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 103    <-> wb 104   E.wex 1469    e. wcel 1481   {cab 2126   U.cuni 3744
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122
This theorem depends on definitions:  df-bi 116  df-tru 1335  df-nf 1438  df-sb 1737  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-v 2691  df-uni 3745
This theorem is referenced by:  elunirab  3757  dfiun2g  3853  inuni  4088  snnex  4377  elfv  5427  unielxp  6080  tfrlem9  6224  tfr0dm  6227  metrest  12714
  Copyright terms: Public domain W3C validator