ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eluniab Unicode version

Theorem eluniab 3851
Description: Membership in union of a class abstraction. (Contributed by NM, 11-Aug-1994.) (Revised by Mario Carneiro, 14-Nov-2016.)
Assertion
Ref Expression
eluniab  |-  ( A  e.  U. { x  |  ph }  <->  E. x
( A  e.  x  /\  ph ) )
Distinct variable group:    x, A
Allowed substitution hint:    ph( x)

Proof of Theorem eluniab
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 eluni 3842 . 2  |-  ( A  e.  U. { x  |  ph }  <->  E. y
( A  e.  y  /\  y  e.  {
x  |  ph }
) )
2 nfv 1542 . . . 4  |-  F/ x  A  e.  y
3 nfsab1 2186 . . . 4  |-  F/ x  y  e.  { x  |  ph }
42, 3nfan 1579 . . 3  |-  F/ x
( A  e.  y  /\  y  e.  {
x  |  ph }
)
5 nfv 1542 . . 3  |-  F/ y ( A  e.  x  /\  ph )
6 eleq2 2260 . . . 4  |-  ( y  =  x  ->  ( A  e.  y  <->  A  e.  x ) )
7 eleq1 2259 . . . . 5  |-  ( y  =  x  ->  (
y  e.  { x  |  ph }  <->  x  e.  { x  |  ph }
) )
8 abid 2184 . . . . 5  |-  ( x  e.  { x  | 
ph }  <->  ph )
97, 8bitrdi 196 . . . 4  |-  ( y  =  x  ->  (
y  e.  { x  |  ph }  <->  ph ) )
106, 9anbi12d 473 . . 3  |-  ( y  =  x  ->  (
( A  e.  y  /\  y  e.  {
x  |  ph }
)  <->  ( A  e.  x  /\  ph )
) )
114, 5, 10cbvex 1770 . 2  |-  ( E. y ( A  e.  y  /\  y  e. 
{ x  |  ph } )  <->  E. x
( A  e.  x  /\  ph ) )
121, 11bitri 184 1  |-  ( A  e.  U. { x  |  ph }  <->  E. x
( A  e.  x  /\  ph ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105   E.wex 1506    e. wcel 2167   {cab 2182   U.cuni 3839
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-uni 3840
This theorem is referenced by:  elunirab  3852  dfiun2g  3948  inuni  4188  snnex  4483  eliota  5246  elfv  5556  unielxp  6232  tfrlem9  6377  tfr0dm  6380  metrest  14742
  Copyright terms: Public domain W3C validator