| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eluniab | Unicode version | ||
| Description: Membership in union of a class abstraction. (Contributed by NM, 11-Aug-1994.) (Revised by Mario Carneiro, 14-Nov-2016.) |
| Ref | Expression |
|---|---|
| eluniab |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eluni 3853 |
. 2
| |
| 2 | nfv 1551 |
. . . 4
| |
| 3 | nfsab1 2195 |
. . . 4
| |
| 4 | 2, 3 | nfan 1588 |
. . 3
|
| 5 | nfv 1551 |
. . 3
| |
| 6 | eleq2 2269 |
. . . 4
| |
| 7 | eleq1 2268 |
. . . . 5
| |
| 8 | abid 2193 |
. . . . 5
| |
| 9 | 7, 8 | bitrdi 196 |
. . . 4
|
| 10 | 6, 9 | anbi12d 473 |
. . 3
|
| 11 | 4, 5, 10 | cbvex 1779 |
. 2
|
| 12 | 1, 11 | bitri 184 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-v 2774 df-uni 3851 |
| This theorem is referenced by: elunirab 3863 dfiun2g 3959 inuni 4199 snnex 4495 eliota 5259 elfv 5574 unielxp 6260 tfrlem9 6405 tfr0dm 6408 metrest 14978 |
| Copyright terms: Public domain | W3C validator |