Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eluniab | Unicode version |
Description: Membership in union of a class abstraction. (Contributed by NM, 11-Aug-1994.) (Revised by Mario Carneiro, 14-Nov-2016.) |
Ref | Expression |
---|---|
eluniab |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eluni 3792 | . 2 | |
2 | nfv 1516 | . . . 4 | |
3 | nfsab1 2155 | . . . 4 | |
4 | 2, 3 | nfan 1553 | . . 3 |
5 | nfv 1516 | . . 3 | |
6 | eleq2 2230 | . . . 4 | |
7 | eleq1 2229 | . . . . 5 | |
8 | abid 2153 | . . . . 5 | |
9 | 7, 8 | bitrdi 195 | . . . 4 |
10 | 6, 9 | anbi12d 465 | . . 3 |
11 | 4, 5, 10 | cbvex 1744 | . 2 |
12 | 1, 11 | bitri 183 | 1 |
Colors of variables: wff set class |
Syntax hints: wa 103 wb 104 wex 1480 wcel 2136 cab 2151 cuni 3789 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 df-uni 3790 |
This theorem is referenced by: elunirab 3802 dfiun2g 3898 inuni 4134 snnex 4426 elfv 5484 unielxp 6142 tfrlem9 6287 tfr0dm 6290 metrest 13146 |
Copyright terms: Public domain | W3C validator |