| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eluniab | Unicode version | ||
| Description: Membership in union of a class abstraction. (Contributed by NM, 11-Aug-1994.) (Revised by Mario Carneiro, 14-Nov-2016.) |
| Ref | Expression |
|---|---|
| eluniab |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eluni 3867 |
. 2
| |
| 2 | nfv 1552 |
. . . 4
| |
| 3 | nfsab1 2197 |
. . . 4
| |
| 4 | 2, 3 | nfan 1589 |
. . 3
|
| 5 | nfv 1552 |
. . 3
| |
| 6 | eleq2 2271 |
. . . 4
| |
| 7 | eleq1 2270 |
. . . . 5
| |
| 8 | abid 2195 |
. . . . 5
| |
| 9 | 7, 8 | bitrdi 196 |
. . . 4
|
| 10 | 6, 9 | anbi12d 473 |
. . 3
|
| 11 | 4, 5, 10 | cbvex 1780 |
. 2
|
| 12 | 1, 11 | bitri 184 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-v 2778 df-uni 3865 |
| This theorem is referenced by: elunirab 3877 dfiun2g 3973 inuni 4215 snnex 4513 eliota 5278 elfv 5597 unielxp 6283 tfrlem9 6428 tfr0dm 6431 metrest 15093 |
| Copyright terms: Public domain | W3C validator |