| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elfv | GIF version | ||
| Description: Membership in a function value. (Contributed by NM, 30-Apr-2004.) |
| Ref | Expression |
|---|---|
| elfv | ⊢ (𝐴 ∈ (𝐹‘𝐵) ↔ ∃𝑥(𝐴 ∈ 𝑥 ∧ ∀𝑦(𝐵𝐹𝑦 ↔ 𝑦 = 𝑥))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fv2 5584 | . . 3 ⊢ (𝐹‘𝐵) = ∪ {𝑥 ∣ ∀𝑦(𝐵𝐹𝑦 ↔ 𝑦 = 𝑥)} | |
| 2 | 1 | eleq2i 2273 | . 2 ⊢ (𝐴 ∈ (𝐹‘𝐵) ↔ 𝐴 ∈ ∪ {𝑥 ∣ ∀𝑦(𝐵𝐹𝑦 ↔ 𝑦 = 𝑥)}) |
| 3 | eluniab 3868 | . 2 ⊢ (𝐴 ∈ ∪ {𝑥 ∣ ∀𝑦(𝐵𝐹𝑦 ↔ 𝑦 = 𝑥)} ↔ ∃𝑥(𝐴 ∈ 𝑥 ∧ ∀𝑦(𝐵𝐹𝑦 ↔ 𝑦 = 𝑥))) | |
| 4 | 2, 3 | bitri 184 | 1 ⊢ (𝐴 ∈ (𝐹‘𝐵) ↔ ∃𝑥(𝐴 ∈ 𝑥 ∧ ∀𝑦(𝐵𝐹𝑦 ↔ 𝑦 = 𝑥))) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 ∀wal 1371 ∃wex 1516 ∈ wcel 2177 {cab 2192 ∪ cuni 3856 class class class wbr 4051 ‘cfv 5280 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-rex 2491 df-v 2775 df-sn 3644 df-uni 3857 df-iota 5241 df-fv 5288 |
| This theorem is referenced by: fv3 5612 relelfvdm 5621 |
| Copyright terms: Public domain | W3C validator |