Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elfv | GIF version |
Description: Membership in a function value. (Contributed by NM, 30-Apr-2004.) |
Ref | Expression |
---|---|
elfv | ⊢ (𝐴 ∈ (𝐹‘𝐵) ↔ ∃𝑥(𝐴 ∈ 𝑥 ∧ ∀𝑦(𝐵𝐹𝑦 ↔ 𝑦 = 𝑥))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fv2 5491 | . . 3 ⊢ (𝐹‘𝐵) = ∪ {𝑥 ∣ ∀𝑦(𝐵𝐹𝑦 ↔ 𝑦 = 𝑥)} | |
2 | 1 | eleq2i 2237 | . 2 ⊢ (𝐴 ∈ (𝐹‘𝐵) ↔ 𝐴 ∈ ∪ {𝑥 ∣ ∀𝑦(𝐵𝐹𝑦 ↔ 𝑦 = 𝑥)}) |
3 | eluniab 3808 | . 2 ⊢ (𝐴 ∈ ∪ {𝑥 ∣ ∀𝑦(𝐵𝐹𝑦 ↔ 𝑦 = 𝑥)} ↔ ∃𝑥(𝐴 ∈ 𝑥 ∧ ∀𝑦(𝐵𝐹𝑦 ↔ 𝑦 = 𝑥))) | |
4 | 2, 3 | bitri 183 | 1 ⊢ (𝐴 ∈ (𝐹‘𝐵) ↔ ∃𝑥(𝐴 ∈ 𝑥 ∧ ∀𝑦(𝐵𝐹𝑦 ↔ 𝑦 = 𝑥))) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 ↔ wb 104 ∀wal 1346 ∃wex 1485 ∈ wcel 2141 {cab 2156 ∪ cuni 3796 class class class wbr 3989 ‘cfv 5198 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-rex 2454 df-v 2732 df-sn 3589 df-uni 3797 df-iota 5160 df-fv 5206 |
This theorem is referenced by: fv3 5519 relelfvdm 5528 |
Copyright terms: Public domain | W3C validator |