ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dffv4g Unicode version

Theorem dffv4g 5573
Description: The previous definition of function value, from before the 
iota operator was introduced. Although based on the idea embodied by Definition 10.2 of [Quine] p. 65 (see args 5051), this definition apparently does not appear in the literature. (Contributed by NM, 1-Aug-1994.)
Assertion
Ref Expression
dffv4g  |-  ( A  e.  V  ->  ( F `  A )  =  U. { x  |  ( F " { A } )  =  {
x } } )
Distinct variable groups:    x, A    x, F    x, V

Proof of Theorem dffv4g
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 dffv3g 5572 . 2  |-  ( A  e.  V  ->  ( F `  A )  =  ( iota y
y  e.  ( F
" { A }
) ) )
2 df-iota 5232 . . 3  |-  ( iota y y  e.  ( F " { A } ) )  = 
U. { x  |  { y  |  y  e.  ( F " { A } ) }  =  { x } }
3 abid2 2326 . . . . . 6  |-  { y  |  y  e.  ( F " { A } ) }  =  ( F " { A } )
43eqeq1i 2213 . . . . 5  |-  ( { y  |  y  e.  ( F " { A } ) }  =  { x }  <->  ( F " { A } )  =  { x }
)
54abbii 2321 . . . 4  |-  { x  |  { y  |  y  e.  ( F " { A } ) }  =  { x } }  =  { x  |  ( F " { A } )  =  { x } }
65unieqi 3860 . . 3  |-  U. {
x  |  { y  |  y  e.  ( F " { A } ) }  =  { x } }  =  U. { x  |  ( F " { A } )  =  {
x } }
72, 6eqtri 2226 . 2  |-  ( iota y y  e.  ( F " { A } ) )  = 
U. { x  |  ( F " { A } )  =  {
x } }
81, 7eqtrdi 2254 1  |-  ( A  e.  V  ->  ( F `  A )  =  U. { x  |  ( F " { A } )  =  {
x } } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373    e. wcel 2176   {cab 2191   {csn 3633   U.cuni 3850   "cima 4678   iotacio 5230   ` cfv 5271
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-sbc 2999  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4045  df-opab 4106  df-xp 4681  df-cnv 4683  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fv 5279
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator