ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dffv4g Unicode version

Theorem dffv4g 5555
Description: The previous definition of function value, from before the 
iota operator was introduced. Although based on the idea embodied by Definition 10.2 of [Quine] p. 65 (see args 5038), this definition apparently does not appear in the literature. (Contributed by NM, 1-Aug-1994.)
Assertion
Ref Expression
dffv4g  |-  ( A  e.  V  ->  ( F `  A )  =  U. { x  |  ( F " { A } )  =  {
x } } )
Distinct variable groups:    x, A    x, F    x, V

Proof of Theorem dffv4g
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 dffv3g 5554 . 2  |-  ( A  e.  V  ->  ( F `  A )  =  ( iota y
y  e.  ( F
" { A }
) ) )
2 df-iota 5219 . . 3  |-  ( iota y y  e.  ( F " { A } ) )  = 
U. { x  |  { y  |  y  e.  ( F " { A } ) }  =  { x } }
3 abid2 2317 . . . . . 6  |-  { y  |  y  e.  ( F " { A } ) }  =  ( F " { A } )
43eqeq1i 2204 . . . . 5  |-  ( { y  |  y  e.  ( F " { A } ) }  =  { x }  <->  ( F " { A } )  =  { x }
)
54abbii 2312 . . . 4  |-  { x  |  { y  |  y  e.  ( F " { A } ) }  =  { x } }  =  { x  |  ( F " { A } )  =  { x } }
65unieqi 3849 . . 3  |-  U. {
x  |  { y  |  y  e.  ( F " { A } ) }  =  { x } }  =  U. { x  |  ( F " { A } )  =  {
x } }
72, 6eqtri 2217 . 2  |-  ( iota y y  e.  ( F " { A } ) )  = 
U. { x  |  ( F " { A } )  =  {
x } }
81, 7eqtrdi 2245 1  |-  ( A  e.  V  ->  ( F `  A )  =  U. { x  |  ( F " { A } )  =  {
x } } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    e. wcel 2167   {cab 2182   {csn 3622   U.cuni 3839   "cima 4666   iotacio 5217   ` cfv 5258
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-sbc 2990  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-xp 4669  df-cnv 4671  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fv 5266
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator