Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elpwuni | GIF version |
Description: Relationship for power class and union. (Contributed by NM, 18-Jul-2006.) |
Ref | Expression |
---|---|
elpwuni | ⊢ (𝐵 ∈ 𝐴 → (𝐴 ⊆ 𝒫 𝐵 ↔ ∪ 𝐴 = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sspwuni 3957 | . 2 ⊢ (𝐴 ⊆ 𝒫 𝐵 ↔ ∪ 𝐴 ⊆ 𝐵) | |
2 | unissel 3825 | . . . 4 ⊢ ((∪ 𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝐴) → ∪ 𝐴 = 𝐵) | |
3 | 2 | expcom 115 | . . 3 ⊢ (𝐵 ∈ 𝐴 → (∪ 𝐴 ⊆ 𝐵 → ∪ 𝐴 = 𝐵)) |
4 | eqimss 3201 | . . 3 ⊢ (∪ 𝐴 = 𝐵 → ∪ 𝐴 ⊆ 𝐵) | |
5 | 3, 4 | impbid1 141 | . 2 ⊢ (𝐵 ∈ 𝐴 → (∪ 𝐴 ⊆ 𝐵 ↔ ∪ 𝐴 = 𝐵)) |
6 | 1, 5 | syl5bb 191 | 1 ⊢ (𝐵 ∈ 𝐴 → (𝐴 ⊆ 𝒫 𝐵 ↔ ∪ 𝐴 = 𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 = wceq 1348 ∈ wcel 2141 ⊆ wss 3121 𝒫 cpw 3566 ∪ cuni 3796 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-v 2732 df-in 3127 df-ss 3134 df-pw 3568 df-uni 3797 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |