ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elpwuni GIF version

Theorem elpwuni 4055
Description: Relationship for power class and union. (Contributed by NM, 18-Jul-2006.)
Assertion
Ref Expression
elpwuni (𝐵𝐴 → (𝐴 ⊆ 𝒫 𝐵 𝐴 = 𝐵))

Proof of Theorem elpwuni
StepHypRef Expression
1 sspwuni 4050 . 2 (𝐴 ⊆ 𝒫 𝐵 𝐴𝐵)
2 unissel 3917 . . . 4 (( 𝐴𝐵𝐵𝐴) → 𝐴 = 𝐵)
32expcom 116 . . 3 (𝐵𝐴 → ( 𝐴𝐵 𝐴 = 𝐵))
4 eqimss 3278 . . 3 ( 𝐴 = 𝐵 𝐴𝐵)
53, 4impbid1 142 . 2 (𝐵𝐴 → ( 𝐴𝐵 𝐴 = 𝐵))
61, 5bitrid 192 1 (𝐵𝐴 → (𝐴 ⊆ 𝒫 𝐵 𝐴 = 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105   = wceq 1395  wcel 2200  wss 3197  𝒫 cpw 3649   cuni 3888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-v 2801  df-in 3203  df-ss 3210  df-pw 3651  df-uni 3889
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator