Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elpwuni | GIF version |
Description: Relationship for power class and union. (Contributed by NM, 18-Jul-2006.) |
Ref | Expression |
---|---|
elpwuni | ⊢ (𝐵 ∈ 𝐴 → (𝐴 ⊆ 𝒫 𝐵 ↔ ∪ 𝐴 = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sspwuni 3933 | . 2 ⊢ (𝐴 ⊆ 𝒫 𝐵 ↔ ∪ 𝐴 ⊆ 𝐵) | |
2 | unissel 3801 | . . . 4 ⊢ ((∪ 𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝐴) → ∪ 𝐴 = 𝐵) | |
3 | 2 | expcom 115 | . . 3 ⊢ (𝐵 ∈ 𝐴 → (∪ 𝐴 ⊆ 𝐵 → ∪ 𝐴 = 𝐵)) |
4 | eqimss 3182 | . . 3 ⊢ (∪ 𝐴 = 𝐵 → ∪ 𝐴 ⊆ 𝐵) | |
5 | 3, 4 | impbid1 141 | . 2 ⊢ (𝐵 ∈ 𝐴 → (∪ 𝐴 ⊆ 𝐵 ↔ ∪ 𝐴 = 𝐵)) |
6 | 1, 5 | syl5bb 191 | 1 ⊢ (𝐵 ∈ 𝐴 → (𝐴 ⊆ 𝒫 𝐵 ↔ ∪ 𝐴 = 𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 = wceq 1335 ∈ wcel 2128 ⊆ wss 3102 𝒫 cpw 3543 ∪ cuni 3772 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-ext 2139 |
This theorem depends on definitions: df-bi 116 df-tru 1338 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ral 2440 df-v 2714 df-in 3108 df-ss 3115 df-pw 3545 df-uni 3773 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |