ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elpwuni GIF version

Theorem elpwuni 4034
Description: Relationship for power class and union. (Contributed by NM, 18-Jul-2006.)
Assertion
Ref Expression
elpwuni (𝐵𝐴 → (𝐴 ⊆ 𝒫 𝐵 𝐴 = 𝐵))

Proof of Theorem elpwuni
StepHypRef Expression
1 sspwuni 4029 . 2 (𝐴 ⊆ 𝒫 𝐵 𝐴𝐵)
2 unissel 3896 . . . 4 (( 𝐴𝐵𝐵𝐴) → 𝐴 = 𝐵)
32expcom 116 . . 3 (𝐵𝐴 → ( 𝐴𝐵 𝐴 = 𝐵))
4 eqimss 3258 . . 3 ( 𝐴 = 𝐵 𝐴𝐵)
53, 4impbid1 142 . 2 (𝐵𝐴 → ( 𝐴𝐵 𝐴 = 𝐵))
61, 5bitrid 192 1 (𝐵𝐴 → (𝐴 ⊆ 𝒫 𝐵 𝐴 = 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105   = wceq 1375  wcel 2180  wss 3177  𝒫 cpw 3629   cuni 3867
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-ext 2191
This theorem depends on definitions:  df-bi 117  df-tru 1378  df-nf 1487  df-sb 1789  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ral 2493  df-v 2781  df-in 3183  df-ss 3190  df-pw 3631  df-uni 3868
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator