ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iinpw Unicode version

Theorem iinpw 3956
Description: The power class of an intersection in terms of indexed intersection. Exercise 24(a) of [Enderton] p. 33. (Contributed by NM, 29-Nov-2003.)
Assertion
Ref Expression
iinpw  |-  ~P |^| A  =  |^|_ x  e.  A  ~P x
Distinct variable group:    x, A

Proof of Theorem iinpw
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 ssint 3840 . . . 4  |-  ( y 
C_  |^| A  <->  A. x  e.  A  y  C_  x )
2 vex 2729 . . . . . 6  |-  y  e. 
_V
32elpw 3565 . . . . 5  |-  ( y  e.  ~P x  <->  y  C_  x )
43ralbii 2472 . . . 4  |-  ( A. x  e.  A  y  e.  ~P x  <->  A. x  e.  A  y  C_  x )
51, 4bitr4i 186 . . 3  |-  ( y 
C_  |^| A  <->  A. x  e.  A  y  e.  ~P x )
62elpw 3565 . . 3  |-  ( y  e.  ~P |^| A  <->  y 
C_  |^| A )
7 eliin 3871 . . . 4  |-  ( y  e.  _V  ->  (
y  e.  |^|_ x  e.  A  ~P x  <->  A. x  e.  A  y  e.  ~P x ) )
82, 7ax-mp 5 . . 3  |-  ( y  e.  |^|_ x  e.  A  ~P x  <->  A. x  e.  A  y  e.  ~P x
)
95, 6, 83bitr4i 211 . 2  |-  ( y  e.  ~P |^| A  <->  y  e.  |^|_ x  e.  A  ~P x )
109eqriv 2162 1  |-  ~P |^| A  =  |^|_ x  e.  A  ~P x
Colors of variables: wff set class
Syntax hints:    <-> wb 104    = wceq 1343    e. wcel 2136   A.wral 2444   _Vcvv 2726    C_ wss 3116   ~Pcpw 3559   |^|cint 3824   |^|_ciin 3867
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-v 2728  df-in 3122  df-ss 3129  df-pw 3561  df-int 3825  df-iin 3869
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator