ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iinpw Unicode version

Theorem iinpw 3979
Description: The power class of an intersection in terms of indexed intersection. Exercise 24(a) of [Enderton] p. 33. (Contributed by NM, 29-Nov-2003.)
Assertion
Ref Expression
iinpw  |-  ~P |^| A  =  |^|_ x  e.  A  ~P x
Distinct variable group:    x, A

Proof of Theorem iinpw
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 ssint 3862 . . . 4  |-  ( y 
C_  |^| A  <->  A. x  e.  A  y  C_  x )
2 vex 2742 . . . . . 6  |-  y  e. 
_V
32elpw 3583 . . . . 5  |-  ( y  e.  ~P x  <->  y  C_  x )
43ralbii 2483 . . . 4  |-  ( A. x  e.  A  y  e.  ~P x  <->  A. x  e.  A  y  C_  x )
51, 4bitr4i 187 . . 3  |-  ( y 
C_  |^| A  <->  A. x  e.  A  y  e.  ~P x )
62elpw 3583 . . 3  |-  ( y  e.  ~P |^| A  <->  y 
C_  |^| A )
7 eliin 3893 . . . 4  |-  ( y  e.  _V  ->  (
y  e.  |^|_ x  e.  A  ~P x  <->  A. x  e.  A  y  e.  ~P x ) )
82, 7ax-mp 5 . . 3  |-  ( y  e.  |^|_ x  e.  A  ~P x  <->  A. x  e.  A  y  e.  ~P x
)
95, 6, 83bitr4i 212 . 2  |-  ( y  e.  ~P |^| A  <->  y  e.  |^|_ x  e.  A  ~P x )
109eqriv 2174 1  |-  ~P |^| A  =  |^|_ x  e.  A  ~P x
Colors of variables: wff set class
Syntax hints:    <-> wb 105    = wceq 1353    e. wcel 2148   A.wral 2455   _Vcvv 2739    C_ wss 3131   ~Pcpw 3577   |^|cint 3846   |^|_ciin 3889
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-v 2741  df-in 3137  df-ss 3144  df-pw 3579  df-int 3847  df-iin 3891
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator