Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > iinpw | Unicode version |
Description: The power class of an intersection in terms of indexed intersection. Exercise 24(a) of [Enderton] p. 33. (Contributed by NM, 29-Nov-2003.) |
Ref | Expression |
---|---|
iinpw |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssint 3823 | . . . 4 | |
2 | vex 2715 | . . . . . 6 | |
3 | 2 | elpw 3549 | . . . . 5 |
4 | 3 | ralbii 2463 | . . . 4 |
5 | 1, 4 | bitr4i 186 | . . 3 |
6 | 2 | elpw 3549 | . . 3 |
7 | eliin 3854 | . . . 4 | |
8 | 2, 7 | ax-mp 5 | . . 3 |
9 | 5, 6, 8 | 3bitr4i 211 | . 2 |
10 | 9 | eqriv 2154 | 1 |
Colors of variables: wff set class |
Syntax hints: wb 104 wceq 1335 wcel 2128 wral 2435 cvv 2712 wss 3102 cpw 3543 cint 3807 ciin 3850 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-ext 2139 |
This theorem depends on definitions: df-bi 116 df-tru 1338 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ral 2440 df-v 2714 df-in 3108 df-ss 3115 df-pw 3545 df-int 3808 df-iin 3852 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |