ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iinpw Unicode version

Theorem iinpw 4018
Description: The power class of an intersection in terms of indexed intersection. Exercise 24(a) of [Enderton] p. 33. (Contributed by NM, 29-Nov-2003.)
Assertion
Ref Expression
iinpw  |-  ~P |^| A  =  |^|_ x  e.  A  ~P x
Distinct variable group:    x, A

Proof of Theorem iinpw
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 ssint 3901 . . . 4  |-  ( y 
C_  |^| A  <->  A. x  e.  A  y  C_  x )
2 vex 2775 . . . . . 6  |-  y  e. 
_V
32elpw 3622 . . . . 5  |-  ( y  e.  ~P x  <->  y  C_  x )
43ralbii 2512 . . . 4  |-  ( A. x  e.  A  y  e.  ~P x  <->  A. x  e.  A  y  C_  x )
51, 4bitr4i 187 . . 3  |-  ( y 
C_  |^| A  <->  A. x  e.  A  y  e.  ~P x )
62elpw 3622 . . 3  |-  ( y  e.  ~P |^| A  <->  y 
C_  |^| A )
7 eliin 3932 . . . 4  |-  ( y  e.  _V  ->  (
y  e.  |^|_ x  e.  A  ~P x  <->  A. x  e.  A  y  e.  ~P x ) )
82, 7ax-mp 5 . . 3  |-  ( y  e.  |^|_ x  e.  A  ~P x  <->  A. x  e.  A  y  e.  ~P x
)
95, 6, 83bitr4i 212 . 2  |-  ( y  e.  ~P |^| A  <->  y  e.  |^|_ x  e.  A  ~P x )
109eqriv 2202 1  |-  ~P |^| A  =  |^|_ x  e.  A  ~P x
Colors of variables: wff set class
Syntax hints:    <-> wb 105    = wceq 1373    e. wcel 2176   A.wral 2484   _Vcvv 2772    C_ wss 3166   ~Pcpw 3616   |^|cint 3885   |^|_ciin 3928
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-v 2774  df-in 3172  df-ss 3179  df-pw 3618  df-int 3886  df-iin 3930
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator