Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ecoptocl | Unicode version |
Description: Implicit substitution of class for equivalence class of ordered pair. (Contributed by NM, 23-Jul-1995.) |
Ref | Expression |
---|---|
ecoptocl.1 | |
ecoptocl.2 | |
ecoptocl.3 |
Ref | Expression |
---|---|
ecoptocl |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elqsi 6553 | . . 3 | |
2 | eqid 2165 | . . . . 5 | |
3 | eceq1 6536 | . . . . . . 7 | |
4 | 3 | eqeq2d 2177 | . . . . . 6 |
5 | 4 | imbi1d 230 | . . . . 5 |
6 | ecoptocl.3 | . . . . . 6 | |
7 | ecoptocl.2 | . . . . . . 7 | |
8 | 7 | eqcoms 2168 | . . . . . 6 |
9 | 6, 8 | syl5ibcom 154 | . . . . 5 |
10 | 2, 5, 9 | optocl 4680 | . . . 4 |
11 | 10 | rexlimiv 2577 | . . 3 |
12 | 1, 11 | syl 14 | . 2 |
13 | ecoptocl.1 | . 2 | |
14 | 12, 13 | eleq2s 2261 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1343 wcel 2136 wrex 2445 cop 3579 cxp 4602 cec 6499 cqs 6500 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-br 3983 df-opab 4044 df-xp 4610 df-cnv 4612 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-ec 6503 df-qs 6507 |
This theorem is referenced by: 2ecoptocl 6589 3ecoptocl 6590 mulidnq 7330 recexnq 7331 ltsonq 7339 distrnq0 7400 addassnq0 7403 ltposr 7704 0idsr 7708 1idsr 7709 00sr 7710 recexgt0sr 7714 archsr 7723 srpospr 7724 map2psrprg 7746 |
Copyright terms: Public domain | W3C validator |