ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ecoptocl Unicode version

Theorem ecoptocl 6612
Description: Implicit substitution of class for equivalence class of ordered pair. (Contributed by NM, 23-Jul-1995.)
Hypotheses
Ref Expression
ecoptocl.1  |-  S  =  ( ( B  X.  C ) /. R
)
ecoptocl.2  |-  ( [
<. x ,  y >. ] R  =  A  ->  ( ph  <->  ps )
)
ecoptocl.3  |-  ( ( x  e.  B  /\  y  e.  C )  ->  ph )
Assertion
Ref Expression
ecoptocl  |-  ( A  e.  S  ->  ps )
Distinct variable groups:    x, y, A   
x, B, y    x, C, y    x, R, y    ps, x, y
Allowed substitution hints:    ph( x, y)    S( x, y)

Proof of Theorem ecoptocl
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 elqsi 6577 . . 3  |-  ( A  e.  ( ( B  X.  C ) /. R )  ->  E. z  e.  ( B  X.  C
) A  =  [
z ] R )
2 eqid 2175 . . . . 5  |-  ( B  X.  C )  =  ( B  X.  C
)
3 eceq1 6560 . . . . . . 7  |-  ( <.
x ,  y >.  =  z  ->  [ <. x ,  y >. ] R  =  [ z ] R
)
43eqeq2d 2187 . . . . . 6  |-  ( <.
x ,  y >.  =  z  ->  ( A  =  [ <. x ,  y >. ] R  <->  A  =  [ z ] R ) )
54imbi1d 231 . . . . 5  |-  ( <.
x ,  y >.  =  z  ->  ( ( A  =  [ <. x ,  y >. ] R  ->  ps )  <->  ( A  =  [ z ] R  ->  ps ) ) )
6 ecoptocl.3 . . . . . 6  |-  ( ( x  e.  B  /\  y  e.  C )  ->  ph )
7 ecoptocl.2 . . . . . . 7  |-  ( [
<. x ,  y >. ] R  =  A  ->  ( ph  <->  ps )
)
87eqcoms 2178 . . . . . 6  |-  ( A  =  [ <. x ,  y >. ] R  ->  ( ph  <->  ps )
)
96, 8syl5ibcom 155 . . . . 5  |-  ( ( x  e.  B  /\  y  e.  C )  ->  ( A  =  [ <. x ,  y >. ] R  ->  ps )
)
102, 5, 9optocl 4696 . . . 4  |-  ( z  e.  ( B  X.  C )  ->  ( A  =  [ z ] R  ->  ps )
)
1110rexlimiv 2586 . . 3  |-  ( E. z  e.  ( B  X.  C ) A  =  [ z ] R  ->  ps )
121, 11syl 14 . 2  |-  ( A  e.  ( ( B  X.  C ) /. R )  ->  ps )
13 ecoptocl.1 . 2  |-  S  =  ( ( B  X.  C ) /. R
)
1412, 13eleq2s 2270 1  |-  ( A  e.  S  ->  ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1353    e. wcel 2146   E.wrex 2454   <.cop 3592    X. cxp 4618   [cec 6523   /.cqs 6524
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-14 2149  ax-ext 2157  ax-sep 4116  ax-pow 4169  ax-pr 4203
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1459  df-sb 1761  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ral 2458  df-rex 2459  df-v 2737  df-un 3131  df-in 3133  df-ss 3140  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-br 3999  df-opab 4060  df-xp 4626  df-cnv 4628  df-dm 4630  df-rn 4631  df-res 4632  df-ima 4633  df-ec 6527  df-qs 6531
This theorem is referenced by:  2ecoptocl  6613  3ecoptocl  6614  mulidnq  7363  recexnq  7364  ltsonq  7372  distrnq0  7433  addassnq0  7436  ltposr  7737  0idsr  7741  1idsr  7742  00sr  7743  recexgt0sr  7747  archsr  7756  srpospr  7757  map2psrprg  7779
  Copyright terms: Public domain W3C validator