Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ecoptocl | Unicode version |
Description: Implicit substitution of class for equivalence class of ordered pair. (Contributed by NM, 23-Jul-1995.) |
Ref | Expression |
---|---|
ecoptocl.1 | |
ecoptocl.2 | |
ecoptocl.3 |
Ref | Expression |
---|---|
ecoptocl |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elqsi 6577 | . . 3 | |
2 | eqid 2175 | . . . . 5 | |
3 | eceq1 6560 | . . . . . . 7 | |
4 | 3 | eqeq2d 2187 | . . . . . 6 |
5 | 4 | imbi1d 231 | . . . . 5 |
6 | ecoptocl.3 | . . . . . 6 | |
7 | ecoptocl.2 | . . . . . . 7 | |
8 | 7 | eqcoms 2178 | . . . . . 6 |
9 | 6, 8 | syl5ibcom 155 | . . . . 5 |
10 | 2, 5, 9 | optocl 4696 | . . . 4 |
11 | 10 | rexlimiv 2586 | . . 3 |
12 | 1, 11 | syl 14 | . 2 |
13 | ecoptocl.1 | . 2 | |
14 | 12, 13 | eleq2s 2270 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 104 wb 105 wceq 1353 wcel 2146 wrex 2454 cop 3592 cxp 4618 cec 6523 cqs 6524 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-pow 4169 ax-pr 4203 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ral 2458 df-rex 2459 df-v 2737 df-un 3131 df-in 3133 df-ss 3140 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-br 3999 df-opab 4060 df-xp 4626 df-cnv 4628 df-dm 4630 df-rn 4631 df-res 4632 df-ima 4633 df-ec 6527 df-qs 6531 |
This theorem is referenced by: 2ecoptocl 6613 3ecoptocl 6614 mulidnq 7363 recexnq 7364 ltsonq 7372 distrnq0 7433 addassnq0 7436 ltposr 7737 0idsr 7741 1idsr 7742 00sr 7743 recexgt0sr 7747 archsr 7756 srpospr 7757 map2psrprg 7779 |
Copyright terms: Public domain | W3C validator |