| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ecoptocl | Unicode version | ||
| Description: Implicit substitution of class for equivalence class of ordered pair. (Contributed by NM, 23-Jul-1995.) |
| Ref | Expression |
|---|---|
| ecoptocl.1 |
|
| ecoptocl.2 |
|
| ecoptocl.3 |
|
| Ref | Expression |
|---|---|
| ecoptocl |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elqsi 6697 |
. . 3
| |
| 2 | eqid 2207 |
. . . . 5
| |
| 3 | eceq1 6678 |
. . . . . . 7
| |
| 4 | 3 | eqeq2d 2219 |
. . . . . 6
|
| 5 | 4 | imbi1d 231 |
. . . . 5
|
| 6 | ecoptocl.3 |
. . . . . 6
| |
| 7 | ecoptocl.2 |
. . . . . . 7
| |
| 8 | 7 | eqcoms 2210 |
. . . . . 6
|
| 9 | 6, 8 | syl5ibcom 155 |
. . . . 5
|
| 10 | 2, 5, 9 | optocl 4769 |
. . . 4
|
| 11 | 10 | rexlimiv 2619 |
. . 3
|
| 12 | 1, 11 | syl 14 |
. 2
|
| 13 | ecoptocl.1 |
. 2
| |
| 14 | 12, 13 | eleq2s 2302 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-v 2778 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-br 4060 df-opab 4122 df-xp 4699 df-cnv 4701 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-ec 6645 df-qs 6649 |
| This theorem is referenced by: 2ecoptocl 6733 3ecoptocl 6734 mulidnq 7537 recexnq 7538 ltsonq 7546 distrnq0 7607 addassnq0 7610 ltposr 7911 0idsr 7915 1idsr 7916 00sr 7917 recexgt0sr 7921 archsr 7930 srpospr 7931 map2psrprg 7953 |
| Copyright terms: Public domain | W3C validator |