| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ecoptocl | Unicode version | ||
| Description: Implicit substitution of class for equivalence class of ordered pair. (Contributed by NM, 23-Jul-1995.) |
| Ref | Expression |
|---|---|
| ecoptocl.1 |
|
| ecoptocl.2 |
|
| ecoptocl.3 |
|
| Ref | Expression |
|---|---|
| ecoptocl |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elqsi 6732 |
. . 3
| |
| 2 | eqid 2229 |
. . . . 5
| |
| 3 | eceq1 6713 |
. . . . . . 7
| |
| 4 | 3 | eqeq2d 2241 |
. . . . . 6
|
| 5 | 4 | imbi1d 231 |
. . . . 5
|
| 6 | ecoptocl.3 |
. . . . . 6
| |
| 7 | ecoptocl.2 |
. . . . . . 7
| |
| 8 | 7 | eqcoms 2232 |
. . . . . 6
|
| 9 | 6, 8 | syl5ibcom 155 |
. . . . 5
|
| 10 | 2, 5, 9 | optocl 4794 |
. . . 4
|
| 11 | 10 | rexlimiv 2642 |
. . 3
|
| 12 | 1, 11 | syl 14 |
. 2
|
| 13 | ecoptocl.1 |
. 2
| |
| 14 | 12, 13 | eleq2s 2324 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-br 4083 df-opab 4145 df-xp 4724 df-cnv 4726 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-ec 6680 df-qs 6684 |
| This theorem is referenced by: 2ecoptocl 6768 3ecoptocl 6769 mulidnq 7572 recexnq 7573 ltsonq 7581 distrnq0 7642 addassnq0 7645 ltposr 7946 0idsr 7950 1idsr 7951 00sr 7952 recexgt0sr 7956 archsr 7965 srpospr 7966 map2psrprg 7988 |
| Copyright terms: Public domain | W3C validator |