ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ecoptocl Unicode version

Theorem ecoptocl 6624
Description: Implicit substitution of class for equivalence class of ordered pair. (Contributed by NM, 23-Jul-1995.)
Hypotheses
Ref Expression
ecoptocl.1  |-  S  =  ( ( B  X.  C ) /. R
)
ecoptocl.2  |-  ( [
<. x ,  y >. ] R  =  A  ->  ( ph  <->  ps )
)
ecoptocl.3  |-  ( ( x  e.  B  /\  y  e.  C )  ->  ph )
Assertion
Ref Expression
ecoptocl  |-  ( A  e.  S  ->  ps )
Distinct variable groups:    x, y, A   
x, B, y    x, C, y    x, R, y    ps, x, y
Allowed substitution hints:    ph( x, y)    S( x, y)

Proof of Theorem ecoptocl
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 elqsi 6589 . . 3  |-  ( A  e.  ( ( B  X.  C ) /. R )  ->  E. z  e.  ( B  X.  C
) A  =  [
z ] R )
2 eqid 2177 . . . . 5  |-  ( B  X.  C )  =  ( B  X.  C
)
3 eceq1 6572 . . . . . . 7  |-  ( <.
x ,  y >.  =  z  ->  [ <. x ,  y >. ] R  =  [ z ] R
)
43eqeq2d 2189 . . . . . 6  |-  ( <.
x ,  y >.  =  z  ->  ( A  =  [ <. x ,  y >. ] R  <->  A  =  [ z ] R ) )
54imbi1d 231 . . . . 5  |-  ( <.
x ,  y >.  =  z  ->  ( ( A  =  [ <. x ,  y >. ] R  ->  ps )  <->  ( A  =  [ z ] R  ->  ps ) ) )
6 ecoptocl.3 . . . . . 6  |-  ( ( x  e.  B  /\  y  e.  C )  ->  ph )
7 ecoptocl.2 . . . . . . 7  |-  ( [
<. x ,  y >. ] R  =  A  ->  ( ph  <->  ps )
)
87eqcoms 2180 . . . . . 6  |-  ( A  =  [ <. x ,  y >. ] R  ->  ( ph  <->  ps )
)
96, 8syl5ibcom 155 . . . . 5  |-  ( ( x  e.  B  /\  y  e.  C )  ->  ( A  =  [ <. x ,  y >. ] R  ->  ps )
)
102, 5, 9optocl 4704 . . . 4  |-  ( z  e.  ( B  X.  C )  ->  ( A  =  [ z ] R  ->  ps )
)
1110rexlimiv 2588 . . 3  |-  ( E. z  e.  ( B  X.  C ) A  =  [ z ] R  ->  ps )
121, 11syl 14 . 2  |-  ( A  e.  ( ( B  X.  C ) /. R )  ->  ps )
13 ecoptocl.1 . 2  |-  S  =  ( ( B  X.  C ) /. R
)
1412, 13eleq2s 2272 1  |-  ( A  e.  S  ->  ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1353    e. wcel 2148   E.wrex 2456   <.cop 3597    X. cxp 4626   [cec 6535   /.cqs 6536
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2741  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-br 4006  df-opab 4067  df-xp 4634  df-cnv 4636  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-ec 6539  df-qs 6543
This theorem is referenced by:  2ecoptocl  6625  3ecoptocl  6626  mulidnq  7390  recexnq  7391  ltsonq  7399  distrnq0  7460  addassnq0  7463  ltposr  7764  0idsr  7768  1idsr  7769  00sr  7770  recexgt0sr  7774  archsr  7783  srpospr  7784  map2psrprg  7806
  Copyright terms: Public domain W3C validator