| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ecoptocl | Unicode version | ||
| Description: Implicit substitution of class for equivalence class of ordered pair. (Contributed by NM, 23-Jul-1995.) |
| Ref | Expression |
|---|---|
| ecoptocl.1 |
|
| ecoptocl.2 |
|
| ecoptocl.3 |
|
| Ref | Expression |
|---|---|
| ecoptocl |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elqsi 6655 |
. . 3
| |
| 2 | eqid 2196 |
. . . . 5
| |
| 3 | eceq1 6636 |
. . . . . . 7
| |
| 4 | 3 | eqeq2d 2208 |
. . . . . 6
|
| 5 | 4 | imbi1d 231 |
. . . . 5
|
| 6 | ecoptocl.3 |
. . . . . 6
| |
| 7 | ecoptocl.2 |
. . . . . . 7
| |
| 8 | 7 | eqcoms 2199 |
. . . . . 6
|
| 9 | 6, 8 | syl5ibcom 155 |
. . . . 5
|
| 10 | 2, 5, 9 | optocl 4740 |
. . . 4
|
| 11 | 10 | rexlimiv 2608 |
. . 3
|
| 12 | 1, 11 | syl 14 |
. 2
|
| 13 | ecoptocl.1 |
. 2
| |
| 14 | 12, 13 | eleq2s 2291 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-br 4035 df-opab 4096 df-xp 4670 df-cnv 4672 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-ec 6603 df-qs 6607 |
| This theorem is referenced by: 2ecoptocl 6691 3ecoptocl 6692 mulidnq 7473 recexnq 7474 ltsonq 7482 distrnq0 7543 addassnq0 7546 ltposr 7847 0idsr 7851 1idsr 7852 00sr 7853 recexgt0sr 7857 archsr 7866 srpospr 7867 map2psrprg 7889 |
| Copyright terms: Public domain | W3C validator |