ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elsuc Unicode version

Theorem elsuc 4384
Description: Membership in a successor. Exercise 5 of [TakeutiZaring] p. 17. (Contributed by NM, 15-Sep-2003.)
Hypothesis
Ref Expression
elsuc.1  |-  A  e. 
_V
Assertion
Ref Expression
elsuc  |-  ( A  e.  suc  B  <->  ( A  e.  B  \/  A  =  B ) )

Proof of Theorem elsuc
StepHypRef Expression
1 elsuc.1 . 2  |-  A  e. 
_V
2 elsucg 4382 . 2  |-  ( A  e.  _V  ->  ( A  e.  suc  B  <->  ( A  e.  B  \/  A  =  B ) ) )
31, 2ax-mp 5 1  |-  ( A  e.  suc  B  <->  ( A  e.  B  \/  A  =  B ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 104    \/ wo 698    = wceq 1343    e. wcel 2136   _Vcvv 2726   suc csuc 4343
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-un 3120  df-sn 3582  df-suc 4349
This theorem is referenced by:  sucel  4388  suctr  4399  0elsucexmid  4542  tfrlemisucaccv  6293  tfr1onlemsucaccv  6309  tfrcllemsucaccv  6322
  Copyright terms: Public domain W3C validator