ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  0elsucexmid Unicode version

Theorem 0elsucexmid 4381
Description: If the successor of any ordinal class contains the empty set, excluded middle follows. (Contributed by Jim Kingdon, 3-Sep-2021.)
Hypothesis
Ref Expression
0elsucexmid.1  |-  A. x  e.  On  (/)  e.  suc  x
Assertion
Ref Expression
0elsucexmid  |-  ( ph  \/  -.  ph )
Distinct variable group:    ph, x

Proof of Theorem 0elsucexmid
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 ordtriexmidlem 4336 . . . 4  |-  { y  e.  { (/) }  |  ph }  e.  On
2 0elsucexmid.1 . . . 4  |-  A. x  e.  On  (/)  e.  suc  x
3 suceq 4229 . . . . . 6  |-  ( x  =  { y  e. 
{ (/) }  |  ph }  ->  suc  x  =  suc  { y  e.  { (/)
}  |  ph }
)
43eleq2d 2157 . . . . 5  |-  ( x  =  { y  e. 
{ (/) }  |  ph }  ->  ( (/)  e.  suc  x 
<->  (/)  e.  suc  { y  e.  { (/) }  |  ph } ) )
54rspcv 2718 . . . 4  |-  ( { y  e.  { (/) }  |  ph }  e.  On  ->  ( A. x  e.  On  (/)  e.  suc  x  -> 
(/)  e.  suc  { y  e.  { (/) }  |  ph } ) )
61, 2, 5mp2 16 . . 3  |-  (/)  e.  suc  { y  e.  { (/) }  |  ph }
7 0ex 3966 . . . 4  |-  (/)  e.  _V
87elsuc 4233 . . 3  |-  ( (/)  e.  suc  { y  e. 
{ (/) }  |  ph } 
<->  ( (/)  e.  { y  e.  { (/) }  |  ph }  \/  (/)  =  {
y  e.  { (/) }  |  ph } ) )
96, 8mpbi 143 . 2  |-  ( (/)  e.  { y  e.  { (/)
}  |  ph }  \/  (/)  =  { y  e.  { (/) }  |  ph } )
107snid 3475 . . . . 5  |-  (/)  e.  { (/)
}
11 biidd 170 . . . . . 6  |-  ( y  =  (/)  ->  ( ph  <->  ph ) )
1211elrab3 2772 . . . . 5  |-  ( (/)  e.  { (/) }  ->  ( (/) 
e.  { y  e. 
{ (/) }  |  ph } 
<-> 
ph ) )
1310, 12ax-mp 7 . . . 4  |-  ( (/)  e.  { y  e.  { (/)
}  |  ph }  <->  ph )
1413biimpi 118 . . 3  |-  ( (/)  e.  { y  e.  { (/)
}  |  ph }  ->  ph )
15 ordtriexmidlem2 4337 . . . 4  |-  ( { y  e.  { (/) }  |  ph }  =  (/) 
->  -.  ph )
1615eqcoms 2091 . . 3  |-  ( (/)  =  { y  e.  { (/)
}  |  ph }  ->  -.  ph )
1714, 16orim12i 711 . 2  |-  ( (
(/)  e.  { y  e.  { (/) }  |  ph }  \/  (/)  =  {
y  e.  { (/) }  |  ph } )  ->  ( ph  \/  -.  ph ) )
189, 17ax-mp 7 1  |-  ( ph  \/  -.  ph )
Colors of variables: wff set class
Syntax hints:   -. wn 3    <-> wb 103    \/ wo 664    = wceq 1289    e. wcel 1438   A.wral 2359   {crab 2363   (/)c0 3286   {csn 3446   Oncon0 4190   suc csuc 4192
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-sep 3957  ax-nul 3965  ax-pow 4009
This theorem depends on definitions:  df-bi 115  df-3an 926  df-tru 1292  df-nf 1395  df-sb 1693  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ral 2364  df-rex 2365  df-rab 2368  df-v 2621  df-dif 3001  df-un 3003  df-in 3005  df-ss 3012  df-nul 3287  df-pw 3431  df-sn 3452  df-uni 3654  df-tr 3937  df-iord 4193  df-on 4195  df-suc 4198
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator