| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 0elsucexmid | Unicode version | ||
| Description: If the successor of any ordinal class contains the empty set, excluded middle follows. (Contributed by Jim Kingdon, 3-Sep-2021.) |
| Ref | Expression |
|---|---|
| 0elsucexmid.1 |
|
| Ref | Expression |
|---|---|
| 0elsucexmid |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordtriexmidlem 4575 |
. . . 4
| |
| 2 | 0elsucexmid.1 |
. . . 4
| |
| 3 | suceq 4457 |
. . . . . 6
| |
| 4 | 3 | eleq2d 2276 |
. . . . 5
|
| 5 | 4 | rspcv 2877 |
. . . 4
|
| 6 | 1, 2, 5 | mp2 16 |
. . 3
|
| 7 | 0ex 4179 |
. . . 4
| |
| 8 | 7 | elsuc 4461 |
. . 3
|
| 9 | 6, 8 | mpbi 145 |
. 2
|
| 10 | 7 | snid 3669 |
. . . . 5
|
| 11 | biidd 172 |
. . . . . 6
| |
| 12 | 11 | elrab3 2934 |
. . . . 5
|
| 13 | 10, 12 | ax-mp 5 |
. . . 4
|
| 14 | 13 | biimpi 120 |
. . 3
|
| 15 | ordtriexmidlem2 4576 |
. . . 4
| |
| 16 | 15 | eqcoms 2209 |
. . 3
|
| 17 | 14, 16 | orim12i 761 |
. 2
|
| 18 | 9, 17 | ax-mp 5 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-sep 4170 ax-nul 4178 ax-pow 4226 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-rab 2494 df-v 2775 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-pw 3623 df-sn 3644 df-uni 3857 df-tr 4151 df-iord 4421 df-on 4423 df-suc 4426 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |