ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  0elsucexmid Unicode version

Theorem 0elsucexmid 4656
Description: If the successor of any ordinal class contains the empty set, excluded middle follows. (Contributed by Jim Kingdon, 3-Sep-2021.)
Hypothesis
Ref Expression
0elsucexmid.1  |-  A. x  e.  On  (/)  e.  suc  x
Assertion
Ref Expression
0elsucexmid  |-  ( ph  \/  -.  ph )
Distinct variable group:    ph, x

Proof of Theorem 0elsucexmid
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 ordtriexmidlem 4610 . . . 4  |-  { y  e.  { (/) }  |  ph }  e.  On
2 0elsucexmid.1 . . . 4  |-  A. x  e.  On  (/)  e.  suc  x
3 suceq 4492 . . . . . 6  |-  ( x  =  { y  e. 
{ (/) }  |  ph }  ->  suc  x  =  suc  { y  e.  { (/)
}  |  ph }
)
43eleq2d 2299 . . . . 5  |-  ( x  =  { y  e. 
{ (/) }  |  ph }  ->  ( (/)  e.  suc  x 
<->  (/)  e.  suc  { y  e.  { (/) }  |  ph } ) )
54rspcv 2903 . . . 4  |-  ( { y  e.  { (/) }  |  ph }  e.  On  ->  ( A. x  e.  On  (/)  e.  suc  x  -> 
(/)  e.  suc  { y  e.  { (/) }  |  ph } ) )
61, 2, 5mp2 16 . . 3  |-  (/)  e.  suc  { y  e.  { (/) }  |  ph }
7 0ex 4210 . . . 4  |-  (/)  e.  _V
87elsuc 4496 . . 3  |-  ( (/)  e.  suc  { y  e. 
{ (/) }  |  ph } 
<->  ( (/)  e.  { y  e.  { (/) }  |  ph }  \/  (/)  =  {
y  e.  { (/) }  |  ph } ) )
96, 8mpbi 145 . 2  |-  ( (/)  e.  { y  e.  { (/)
}  |  ph }  \/  (/)  =  { y  e.  { (/) }  |  ph } )
107snid 3697 . . . . 5  |-  (/)  e.  { (/)
}
11 biidd 172 . . . . . 6  |-  ( y  =  (/)  ->  ( ph  <->  ph ) )
1211elrab3 2960 . . . . 5  |-  ( (/)  e.  { (/) }  ->  ( (/) 
e.  { y  e. 
{ (/) }  |  ph } 
<-> 
ph ) )
1310, 12ax-mp 5 . . . 4  |-  ( (/)  e.  { y  e.  { (/)
}  |  ph }  <->  ph )
1413biimpi 120 . . 3  |-  ( (/)  e.  { y  e.  { (/)
}  |  ph }  ->  ph )
15 ordtriexmidlem2 4611 . . . 4  |-  ( { y  e.  { (/) }  |  ph }  =  (/) 
->  -.  ph )
1615eqcoms 2232 . . 3  |-  ( (/)  =  { y  e.  { (/)
}  |  ph }  ->  -.  ph )
1714, 16orim12i 764 . 2  |-  ( (
(/)  e.  { y  e.  { (/) }  |  ph }  \/  (/)  =  {
y  e.  { (/) }  |  ph } )  ->  ( ph  \/  -.  ph ) )
189, 17ax-mp 5 1  |-  ( ph  \/  -.  ph )
Colors of variables: wff set class
Syntax hints:   -. wn 3    <-> wb 105    \/ wo 713    = wceq 1395    e. wcel 2200   A.wral 2508   {crab 2512   (/)c0 3491   {csn 3666   Oncon0 4453   suc csuc 4455
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-nul 4209  ax-pow 4257
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-uni 3888  df-tr 4182  df-iord 4456  df-on 4458  df-suc 4461
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator