ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  0elsucexmid Unicode version

Theorem 0elsucexmid 4549
Description: If the successor of any ordinal class contains the empty set, excluded middle follows. (Contributed by Jim Kingdon, 3-Sep-2021.)
Hypothesis
Ref Expression
0elsucexmid.1  |-  A. x  e.  On  (/)  e.  suc  x
Assertion
Ref Expression
0elsucexmid  |-  ( ph  \/  -.  ph )
Distinct variable group:    ph, x

Proof of Theorem 0elsucexmid
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 ordtriexmidlem 4503 . . . 4  |-  { y  e.  { (/) }  |  ph }  e.  On
2 0elsucexmid.1 . . . 4  |-  A. x  e.  On  (/)  e.  suc  x
3 suceq 4387 . . . . . 6  |-  ( x  =  { y  e. 
{ (/) }  |  ph }  ->  suc  x  =  suc  { y  e.  { (/)
}  |  ph }
)
43eleq2d 2240 . . . . 5  |-  ( x  =  { y  e. 
{ (/) }  |  ph }  ->  ( (/)  e.  suc  x 
<->  (/)  e.  suc  { y  e.  { (/) }  |  ph } ) )
54rspcv 2830 . . . 4  |-  ( { y  e.  { (/) }  |  ph }  e.  On  ->  ( A. x  e.  On  (/)  e.  suc  x  -> 
(/)  e.  suc  { y  e.  { (/) }  |  ph } ) )
61, 2, 5mp2 16 . . 3  |-  (/)  e.  suc  { y  e.  { (/) }  |  ph }
7 0ex 4116 . . . 4  |-  (/)  e.  _V
87elsuc 4391 . . 3  |-  ( (/)  e.  suc  { y  e. 
{ (/) }  |  ph } 
<->  ( (/)  e.  { y  e.  { (/) }  |  ph }  \/  (/)  =  {
y  e.  { (/) }  |  ph } ) )
96, 8mpbi 144 . 2  |-  ( (/)  e.  { y  e.  { (/)
}  |  ph }  \/  (/)  =  { y  e.  { (/) }  |  ph } )
107snid 3614 . . . . 5  |-  (/)  e.  { (/)
}
11 biidd 171 . . . . . 6  |-  ( y  =  (/)  ->  ( ph  <->  ph ) )
1211elrab3 2887 . . . . 5  |-  ( (/)  e.  { (/) }  ->  ( (/) 
e.  { y  e. 
{ (/) }  |  ph } 
<-> 
ph ) )
1310, 12ax-mp 5 . . . 4  |-  ( (/)  e.  { y  e.  { (/)
}  |  ph }  <->  ph )
1413biimpi 119 . . 3  |-  ( (/)  e.  { y  e.  { (/)
}  |  ph }  ->  ph )
15 ordtriexmidlem2 4504 . . . 4  |-  ( { y  e.  { (/) }  |  ph }  =  (/) 
->  -.  ph )
1615eqcoms 2173 . . 3  |-  ( (/)  =  { y  e.  { (/)
}  |  ph }  ->  -.  ph )
1714, 16orim12i 754 . 2  |-  ( (
(/)  e.  { y  e.  { (/) }  |  ph }  \/  (/)  =  {
y  e.  { (/) }  |  ph } )  ->  ( ph  \/  -.  ph ) )
189, 17ax-mp 5 1  |-  ( ph  \/  -.  ph )
Colors of variables: wff set class
Syntax hints:   -. wn 3    <-> wb 104    \/ wo 703    = wceq 1348    e. wcel 2141   A.wral 2448   {crab 2452   (/)c0 3414   {csn 3583   Oncon0 4348   suc csuc 4350
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-nul 4115  ax-pow 4160
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-rab 2457  df-v 2732  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-uni 3797  df-tr 4088  df-iord 4351  df-on 4353  df-suc 4356
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator