ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elsuc2g Unicode version

Theorem elsuc2g 4465
Description: Variant of membership in a successor, requiring that  B rather than  A be a set. (Contributed by NM, 28-Oct-2003.)
Assertion
Ref Expression
elsuc2g  |-  ( B  e.  V  ->  ( A  e.  suc  B  <->  ( A  e.  B  \/  A  =  B ) ) )

Proof of Theorem elsuc2g
StepHypRef Expression
1 df-suc 4431 . . 3  |-  suc  B  =  ( B  u.  { B } )
21eleq2i 2273 . 2  |-  ( A  e.  suc  B  <->  A  e.  ( B  u.  { B } ) )
3 elun 3318 . . 3  |-  ( A  e.  ( B  u.  { B } )  <->  ( A  e.  B  \/  A  e.  { B } ) )
4 elsn2g 3671 . . . 4  |-  ( B  e.  V  ->  ( A  e.  { B } 
<->  A  =  B ) )
54orbi2d 792 . . 3  |-  ( B  e.  V  ->  (
( A  e.  B  \/  A  e.  { B } )  <->  ( A  e.  B  \/  A  =  B ) ) )
63, 5bitrid 192 . 2  |-  ( B  e.  V  ->  ( A  e.  ( B  u.  { B } )  <-> 
( A  e.  B  \/  A  =  B
) ) )
72, 6bitrid 192 1  |-  ( B  e.  V  ->  ( A  e.  suc  B  <->  ( A  e.  B  \/  A  =  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    \/ wo 710    = wceq 1373    e. wcel 2177    u. cun 3168   {csn 3638   suc csuc 4425
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-v 2775  df-un 3174  df-sn 3644  df-suc 4431
This theorem is referenced by:  elsuc2  4467  nntri3or  6597  frec2uzltd  10580
  Copyright terms: Public domain W3C validator