ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elsuc2g Unicode version

Theorem elsuc2g 4423
Description: Variant of membership in a successor, requiring that  B rather than  A be a set. (Contributed by NM, 28-Oct-2003.)
Assertion
Ref Expression
elsuc2g  |-  ( B  e.  V  ->  ( A  e.  suc  B  <->  ( A  e.  B  \/  A  =  B ) ) )

Proof of Theorem elsuc2g
StepHypRef Expression
1 df-suc 4389 . . 3  |-  suc  B  =  ( B  u.  { B } )
21eleq2i 2256 . 2  |-  ( A  e.  suc  B  <->  A  e.  ( B  u.  { B } ) )
3 elun 3291 . . 3  |-  ( A  e.  ( B  u.  { B } )  <->  ( A  e.  B  \/  A  e.  { B } ) )
4 elsn2g 3640 . . . 4  |-  ( B  e.  V  ->  ( A  e.  { B } 
<->  A  =  B ) )
54orbi2d 791 . . 3  |-  ( B  e.  V  ->  (
( A  e.  B  \/  A  e.  { B } )  <->  ( A  e.  B  \/  A  =  B ) ) )
63, 5bitrid 192 . 2  |-  ( B  e.  V  ->  ( A  e.  ( B  u.  { B } )  <-> 
( A  e.  B  \/  A  =  B
) ) )
72, 6bitrid 192 1  |-  ( B  e.  V  ->  ( A  e.  suc  B  <->  ( A  e.  B  \/  A  =  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    \/ wo 709    = wceq 1364    e. wcel 2160    u. cun 3142   {csn 3607   suc csuc 4383
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2171
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-v 2754  df-un 3148  df-sn 3613  df-suc 4389
This theorem is referenced by:  elsuc2  4425  nntri3or  6519  frec2uzltd  10436
  Copyright terms: Public domain W3C validator