ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elsuc2g Unicode version

Theorem elsuc2g 4383
Description: Variant of membership in a successor, requiring that  B rather than  A be a set. (Contributed by NM, 28-Oct-2003.)
Assertion
Ref Expression
elsuc2g  |-  ( B  e.  V  ->  ( A  e.  suc  B  <->  ( A  e.  B  \/  A  =  B ) ) )

Proof of Theorem elsuc2g
StepHypRef Expression
1 df-suc 4349 . . 3  |-  suc  B  =  ( B  u.  { B } )
21eleq2i 2233 . 2  |-  ( A  e.  suc  B  <->  A  e.  ( B  u.  { B } ) )
3 elun 3263 . . 3  |-  ( A  e.  ( B  u.  { B } )  <->  ( A  e.  B  \/  A  e.  { B } ) )
4 elsn2g 3609 . . . 4  |-  ( B  e.  V  ->  ( A  e.  { B } 
<->  A  =  B ) )
54orbi2d 780 . . 3  |-  ( B  e.  V  ->  (
( A  e.  B  \/  A  e.  { B } )  <->  ( A  e.  B  \/  A  =  B ) ) )
63, 5syl5bb 191 . 2  |-  ( B  e.  V  ->  ( A  e.  ( B  u.  { B } )  <-> 
( A  e.  B  \/  A  =  B
) ) )
72, 6syl5bb 191 1  |-  ( B  e.  V  ->  ( A  e.  suc  B  <->  ( A  e.  B  \/  A  =  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104    \/ wo 698    = wceq 1343    e. wcel 2136    u. cun 3114   {csn 3576   suc csuc 4343
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-un 3120  df-sn 3582  df-suc 4349
This theorem is referenced by:  elsuc2  4385  nntri3or  6461  frec2uzltd  10338
  Copyright terms: Public domain W3C validator