Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elsucg | Unicode version |
Description: Membership in a successor. Exercise 5 of [TakeutiZaring] p. 17. (Contributed by NM, 15-Sep-1995.) |
Ref | Expression |
---|---|
elsucg |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-suc 4356 | . . . 4 | |
2 | 1 | eleq2i 2237 | . . 3 |
3 | elun 3268 | . . 3 | |
4 | 2, 3 | bitri 183 | . 2 |
5 | elsng 3598 | . . 3 | |
6 | 5 | orbi2d 785 | . 2 |
7 | 4, 6 | syl5bb 191 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 wo 703 wceq 1348 wcel 2141 cun 3119 csn 3583 csuc 4350 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-v 2732 df-un 3125 df-sn 3589 df-suc 4356 |
This theorem is referenced by: elsuc 4391 elelsuc 4394 sucidg 4401 onsucelsucr 4492 onsucsssucexmid 4511 suc11g 4541 nnsssuc 6481 nlt1pig 7303 bj-peano4 13990 |
Copyright terms: Public domain | W3C validator |