| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elsucg | Unicode version | ||
| Description: Membership in a successor. Exercise 5 of [TakeutiZaring] p. 17. (Contributed by NM, 15-Sep-1995.) |
| Ref | Expression |
|---|---|
| elsucg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-suc 4419 |
. . . 4
| |
| 2 | 1 | eleq2i 2272 |
. . 3
|
| 3 | elun 3314 |
. . 3
| |
| 4 | 2, 3 | bitri 184 |
. 2
|
| 5 | elsng 3648 |
. . 3
| |
| 6 | 5 | orbi2d 792 |
. 2
|
| 7 | 4, 6 | bitrid 192 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-v 2774 df-un 3170 df-sn 3639 df-suc 4419 |
| This theorem is referenced by: elsuc 4454 elelsuc 4457 sucidg 4464 onsucelsucr 4557 onsucsssucexmid 4576 suc11g 4606 nnsssuc 6590 nlt1pig 7456 bj-peano4 15928 |
| Copyright terms: Public domain | W3C validator |