ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elsucg Unicode version

Theorem elsucg 4389
Description: Membership in a successor. Exercise 5 of [TakeutiZaring] p. 17. (Contributed by NM, 15-Sep-1995.)
Assertion
Ref Expression
elsucg  |-  ( A  e.  V  ->  ( A  e.  suc  B  <->  ( A  e.  B  \/  A  =  B ) ) )

Proof of Theorem elsucg
StepHypRef Expression
1 df-suc 4356 . . . 4  |-  suc  B  =  ( B  u.  { B } )
21eleq2i 2237 . . 3  |-  ( A  e.  suc  B  <->  A  e.  ( B  u.  { B } ) )
3 elun 3268 . . 3  |-  ( A  e.  ( B  u.  { B } )  <->  ( A  e.  B  \/  A  e.  { B } ) )
42, 3bitri 183 . 2  |-  ( A  e.  suc  B  <->  ( A  e.  B  \/  A  e.  { B } ) )
5 elsng 3598 . . 3  |-  ( A  e.  V  ->  ( A  e.  { B } 
<->  A  =  B ) )
65orbi2d 785 . 2  |-  ( A  e.  V  ->  (
( A  e.  B  \/  A  e.  { B } )  <->  ( A  e.  B  \/  A  =  B ) ) )
74, 6syl5bb 191 1  |-  ( A  e.  V  ->  ( A  e.  suc  B  <->  ( A  e.  B  \/  A  =  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104    \/ wo 703    = wceq 1348    e. wcel 2141    u. cun 3119   {csn 3583   suc csuc 4350
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-v 2732  df-un 3125  df-sn 3589  df-suc 4356
This theorem is referenced by:  elsuc  4391  elelsuc  4394  sucidg  4401  onsucelsucr  4492  onsucsssucexmid  4511  suc11g  4541  nnsssuc  6481  nlt1pig  7303  bj-peano4  13990
  Copyright terms: Public domain W3C validator