ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elsuc GIF version

Theorem elsuc 4441
Description: Membership in a successor. Exercise 5 of [TakeutiZaring] p. 17. (Contributed by NM, 15-Sep-2003.)
Hypothesis
Ref Expression
elsuc.1 𝐴 ∈ V
Assertion
Ref Expression
elsuc (𝐴 ∈ suc 𝐵 ↔ (𝐴𝐵𝐴 = 𝐵))

Proof of Theorem elsuc
StepHypRef Expression
1 elsuc.1 . 2 𝐴 ∈ V
2 elsucg 4439 . 2 (𝐴 ∈ V → (𝐴 ∈ suc 𝐵 ↔ (𝐴𝐵𝐴 = 𝐵)))
31, 2ax-mp 5 1 (𝐴 ∈ suc 𝐵 ↔ (𝐴𝐵𝐴 = 𝐵))
Colors of variables: wff set class
Syntax hints:  wb 105  wo 709   = wceq 1364  wcel 2167  Vcvv 2763  suc csuc 4400
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-un 3161  df-sn 3628  df-suc 4406
This theorem is referenced by:  sucel  4445  suctr  4456  0elsucexmid  4601  tfrlemisucaccv  6383  tfr1onlemsucaccv  6399  tfrcllemsucaccv  6412
  Copyright terms: Public domain W3C validator