| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elsuc | GIF version | ||
| Description: Membership in a successor. Exercise 5 of [TakeutiZaring] p. 17. (Contributed by NM, 15-Sep-2003.) |
| Ref | Expression |
|---|---|
| elsuc.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| elsuc | ⊢ (𝐴 ∈ suc 𝐵 ↔ (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elsuc.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | elsucg 4469 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∈ suc 𝐵 ↔ (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵))) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ∈ suc 𝐵 ↔ (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 ∨ wo 710 = wceq 1373 ∈ wcel 2178 Vcvv 2776 suc csuc 4430 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-v 2778 df-un 3178 df-sn 3649 df-suc 4436 |
| This theorem is referenced by: sucel 4475 suctr 4486 0elsucexmid 4631 tfrlemisucaccv 6434 tfr1onlemsucaccv 6450 tfrcllemsucaccv 6463 |
| Copyright terms: Public domain | W3C validator |