ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sucel Unicode version

Theorem sucel 4455
Description: Membership of a successor in another class. (Contributed by NM, 29-Jun-2004.)
Assertion
Ref Expression
sucel  |-  ( suc 
A  e.  B  <->  E. x  e.  B  A. y
( y  e.  x  <->  ( y  e.  A  \/  y  =  A )
) )
Distinct variable groups:    x, y, A   
x, B
Allowed substitution hint:    B( y)

Proof of Theorem sucel
StepHypRef Expression
1 risset 2533 . 2  |-  ( suc 
A  e.  B  <->  E. x  e.  B  x  =  suc  A )
2 dfcleq 2198 . . . 4  |-  ( x  =  suc  A  <->  A. y
( y  e.  x  <->  y  e.  suc  A ) )
3 vex 2774 . . . . . . 7  |-  y  e. 
_V
43elsuc 4451 . . . . . 6  |-  ( y  e.  suc  A  <->  ( y  e.  A  \/  y  =  A ) )
54bibi2i 227 . . . . 5  |-  ( ( y  e.  x  <->  y  e.  suc  A )  <->  ( y  e.  x  <->  ( y  e.  A  \/  y  =  A ) ) )
65albii 1492 . . . 4  |-  ( A. y ( y  e.  x  <->  y  e.  suc  A )  <->  A. y ( y  e.  x  <->  ( y  e.  A  \/  y  =  A ) ) )
72, 6bitri 184 . . 3  |-  ( x  =  suc  A  <->  A. y
( y  e.  x  <->  ( y  e.  A  \/  y  =  A )
) )
87rexbii 2512 . 2  |-  ( E. x  e.  B  x  =  suc  A  <->  E. x  e.  B  A. y
( y  e.  x  <->  ( y  e.  A  \/  y  =  A )
) )
91, 8bitri 184 1  |-  ( suc 
A  e.  B  <->  E. x  e.  B  A. y
( y  e.  x  <->  ( y  e.  A  \/  y  =  A )
) )
Colors of variables: wff set class
Syntax hints:    <-> wb 105    \/ wo 709   A.wal 1370    = wceq 1372    e. wcel 2175   E.wrex 2484   suc csuc 4410
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-rex 2489  df-v 2773  df-un 3169  df-sn 3638  df-suc 4416
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator