ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sucel Unicode version

Theorem sucel 4388
Description: Membership of a successor in another class. (Contributed by NM, 29-Jun-2004.)
Assertion
Ref Expression
sucel  |-  ( suc 
A  e.  B  <->  E. x  e.  B  A. y
( y  e.  x  <->  ( y  e.  A  \/  y  =  A )
) )
Distinct variable groups:    x, y, A   
x, B
Allowed substitution hint:    B( y)

Proof of Theorem sucel
StepHypRef Expression
1 risset 2494 . 2  |-  ( suc 
A  e.  B  <->  E. x  e.  B  x  =  suc  A )
2 dfcleq 2159 . . . 4  |-  ( x  =  suc  A  <->  A. y
( y  e.  x  <->  y  e.  suc  A ) )
3 vex 2729 . . . . . . 7  |-  y  e. 
_V
43elsuc 4384 . . . . . 6  |-  ( y  e.  suc  A  <->  ( y  e.  A  \/  y  =  A ) )
54bibi2i 226 . . . . 5  |-  ( ( y  e.  x  <->  y  e.  suc  A )  <->  ( y  e.  x  <->  ( y  e.  A  \/  y  =  A ) ) )
65albii 1458 . . . 4  |-  ( A. y ( y  e.  x  <->  y  e.  suc  A )  <->  A. y ( y  e.  x  <->  ( y  e.  A  \/  y  =  A ) ) )
72, 6bitri 183 . . 3  |-  ( x  =  suc  A  <->  A. y
( y  e.  x  <->  ( y  e.  A  \/  y  =  A )
) )
87rexbii 2473 . 2  |-  ( E. x  e.  B  x  =  suc  A  <->  E. x  e.  B  A. y
( y  e.  x  <->  ( y  e.  A  \/  y  =  A )
) )
91, 8bitri 183 1  |-  ( suc 
A  e.  B  <->  E. x  e.  B  A. y
( y  e.  x  <->  ( y  e.  A  \/  y  =  A )
) )
Colors of variables: wff set class
Syntax hints:    <-> wb 104    \/ wo 698   A.wal 1341    = wceq 1343    e. wcel 2136   E.wrex 2445   suc csuc 4343
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-rex 2450  df-v 2728  df-un 3120  df-sn 3582  df-suc 4349
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator