ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elsuc2g GIF version

Theorem elsuc2g 4436
Description: Variant of membership in a successor, requiring that 𝐵 rather than 𝐴 be a set. (Contributed by NM, 28-Oct-2003.)
Assertion
Ref Expression
elsuc2g (𝐵𝑉 → (𝐴 ∈ suc 𝐵 ↔ (𝐴𝐵𝐴 = 𝐵)))

Proof of Theorem elsuc2g
StepHypRef Expression
1 df-suc 4402 . . 3 suc 𝐵 = (𝐵 ∪ {𝐵})
21eleq2i 2260 . 2 (𝐴 ∈ suc 𝐵𝐴 ∈ (𝐵 ∪ {𝐵}))
3 elun 3300 . . 3 (𝐴 ∈ (𝐵 ∪ {𝐵}) ↔ (𝐴𝐵𝐴 ∈ {𝐵}))
4 elsn2g 3651 . . . 4 (𝐵𝑉 → (𝐴 ∈ {𝐵} ↔ 𝐴 = 𝐵))
54orbi2d 791 . . 3 (𝐵𝑉 → ((𝐴𝐵𝐴 ∈ {𝐵}) ↔ (𝐴𝐵𝐴 = 𝐵)))
63, 5bitrid 192 . 2 (𝐵𝑉 → (𝐴 ∈ (𝐵 ∪ {𝐵}) ↔ (𝐴𝐵𝐴 = 𝐵)))
72, 6bitrid 192 1 (𝐵𝑉 → (𝐴 ∈ suc 𝐵 ↔ (𝐴𝐵𝐴 = 𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  wo 709   = wceq 1364  wcel 2164  cun 3151  {csn 3618  suc csuc 4396
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-un 3157  df-sn 3624  df-suc 4402
This theorem is referenced by:  elsuc2  4438  nntri3or  6546  frec2uzltd  10474
  Copyright terms: Public domain W3C validator