![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > elsuc2g | GIF version |
Description: Variant of membership in a successor, requiring that 𝐵 rather than 𝐴 be a set. (Contributed by NM, 28-Oct-2003.) |
Ref | Expression |
---|---|
elsuc2g | ⊢ (𝐵 ∈ 𝑉 → (𝐴 ∈ suc 𝐵 ↔ (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-suc 4231 | . . 3 ⊢ suc 𝐵 = (𝐵 ∪ {𝐵}) | |
2 | 1 | eleq2i 2166 | . 2 ⊢ (𝐴 ∈ suc 𝐵 ↔ 𝐴 ∈ (𝐵 ∪ {𝐵})) |
3 | elun 3164 | . . 3 ⊢ (𝐴 ∈ (𝐵 ∪ {𝐵}) ↔ (𝐴 ∈ 𝐵 ∨ 𝐴 ∈ {𝐵})) | |
4 | elsn2g 3505 | . . . 4 ⊢ (𝐵 ∈ 𝑉 → (𝐴 ∈ {𝐵} ↔ 𝐴 = 𝐵)) | |
5 | 4 | orbi2d 745 | . . 3 ⊢ (𝐵 ∈ 𝑉 → ((𝐴 ∈ 𝐵 ∨ 𝐴 ∈ {𝐵}) ↔ (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵))) |
6 | 3, 5 | syl5bb 191 | . 2 ⊢ (𝐵 ∈ 𝑉 → (𝐴 ∈ (𝐵 ∪ {𝐵}) ↔ (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵))) |
7 | 2, 6 | syl5bb 191 | 1 ⊢ (𝐵 ∈ 𝑉 → (𝐴 ∈ suc 𝐵 ↔ (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 ∨ wo 670 = wceq 1299 ∈ wcel 1448 ∪ cun 3019 {csn 3474 suc csuc 4225 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 671 ax-5 1391 ax-7 1392 ax-gen 1393 ax-ie1 1437 ax-ie2 1438 ax-8 1450 ax-10 1451 ax-11 1452 ax-i12 1453 ax-bndl 1454 ax-4 1455 ax-17 1474 ax-i9 1478 ax-ial 1482 ax-i5r 1483 ax-ext 2082 |
This theorem depends on definitions: df-bi 116 df-tru 1302 df-nf 1405 df-sb 1704 df-clab 2087 df-cleq 2093 df-clel 2096 df-nfc 2229 df-v 2643 df-un 3025 df-sn 3480 df-suc 4231 |
This theorem is referenced by: elsuc2 4267 nntri3or 6319 frec2uzltd 10017 |
Copyright terms: Public domain | W3C validator |