| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elsuc2g | GIF version | ||
| Description: Variant of membership in a successor, requiring that 𝐵 rather than 𝐴 be a set. (Contributed by NM, 28-Oct-2003.) |
| Ref | Expression |
|---|---|
| elsuc2g | ⊢ (𝐵 ∈ 𝑉 → (𝐴 ∈ suc 𝐵 ↔ (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-suc 4422 | . . 3 ⊢ suc 𝐵 = (𝐵 ∪ {𝐵}) | |
| 2 | 1 | eleq2i 2273 | . 2 ⊢ (𝐴 ∈ suc 𝐵 ↔ 𝐴 ∈ (𝐵 ∪ {𝐵})) |
| 3 | elun 3315 | . . 3 ⊢ (𝐴 ∈ (𝐵 ∪ {𝐵}) ↔ (𝐴 ∈ 𝐵 ∨ 𝐴 ∈ {𝐵})) | |
| 4 | elsn2g 3667 | . . . 4 ⊢ (𝐵 ∈ 𝑉 → (𝐴 ∈ {𝐵} ↔ 𝐴 = 𝐵)) | |
| 5 | 4 | orbi2d 792 | . . 3 ⊢ (𝐵 ∈ 𝑉 → ((𝐴 ∈ 𝐵 ∨ 𝐴 ∈ {𝐵}) ↔ (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵))) |
| 6 | 3, 5 | bitrid 192 | . 2 ⊢ (𝐵 ∈ 𝑉 → (𝐴 ∈ (𝐵 ∪ {𝐵}) ↔ (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵))) |
| 7 | 2, 6 | bitrid 192 | 1 ⊢ (𝐵 ∈ 𝑉 → (𝐴 ∈ suc 𝐵 ↔ (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∨ wo 710 = wceq 1373 ∈ wcel 2177 ∪ cun 3165 {csn 3634 suc csuc 4416 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-v 2775 df-un 3171 df-sn 3640 df-suc 4422 |
| This theorem is referenced by: elsuc2 4458 nntri3or 6586 frec2uzltd 10555 |
| Copyright terms: Public domain | W3C validator |