ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elsuc2g GIF version

Theorem elsuc2g 4390
Description: Variant of membership in a successor, requiring that 𝐵 rather than 𝐴 be a set. (Contributed by NM, 28-Oct-2003.)
Assertion
Ref Expression
elsuc2g (𝐵𝑉 → (𝐴 ∈ suc 𝐵 ↔ (𝐴𝐵𝐴 = 𝐵)))

Proof of Theorem elsuc2g
StepHypRef Expression
1 df-suc 4356 . . 3 suc 𝐵 = (𝐵 ∪ {𝐵})
21eleq2i 2237 . 2 (𝐴 ∈ suc 𝐵𝐴 ∈ (𝐵 ∪ {𝐵}))
3 elun 3268 . . 3 (𝐴 ∈ (𝐵 ∪ {𝐵}) ↔ (𝐴𝐵𝐴 ∈ {𝐵}))
4 elsn2g 3616 . . . 4 (𝐵𝑉 → (𝐴 ∈ {𝐵} ↔ 𝐴 = 𝐵))
54orbi2d 785 . . 3 (𝐵𝑉 → ((𝐴𝐵𝐴 ∈ {𝐵}) ↔ (𝐴𝐵𝐴 = 𝐵)))
63, 5syl5bb 191 . 2 (𝐵𝑉 → (𝐴 ∈ (𝐵 ∪ {𝐵}) ↔ (𝐴𝐵𝐴 = 𝐵)))
72, 6syl5bb 191 1 (𝐵𝑉 → (𝐴 ∈ suc 𝐵 ↔ (𝐴𝐵𝐴 = 𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104  wo 703   = wceq 1348  wcel 2141  cun 3119  {csn 3583  suc csuc 4350
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-v 2732  df-un 3125  df-sn 3589  df-suc 4356
This theorem is referenced by:  elsuc2  4392  nntri3or  6472  frec2uzltd  10359
  Copyright terms: Public domain W3C validator