ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elunirab Unicode version

Theorem elunirab 3834
Description: Membership in union of a class abstraction. (Contributed by NM, 4-Oct-2006.)
Assertion
Ref Expression
elunirab  |-  ( A  e.  U. { x  e.  B  |  ph }  <->  E. x  e.  B  ( A  e.  x  /\  ph ) )
Distinct variable group:    x, A
Allowed substitution hints:    ph( x)    B( x)

Proof of Theorem elunirab
StepHypRef Expression
1 eluniab 3833 . 2  |-  ( A  e.  U. { x  |  ( x  e.  B  /\  ph ) } 
<->  E. x ( A  e.  x  /\  (
x  e.  B  /\  ph ) ) )
2 df-rab 2474 . . . 4  |-  { x  e.  B  |  ph }  =  { x  |  ( x  e.  B  /\  ph ) }
32unieqi 3831 . . 3  |-  U. {
x  e.  B  |  ph }  =  U. {
x  |  ( x  e.  B  /\  ph ) }
43eleq2i 2254 . 2  |-  ( A  e.  U. { x  e.  B  |  ph }  <->  A  e.  U. { x  |  ( x  e.  B  /\  ph ) } )
5 df-rex 2471 . . 3  |-  ( E. x  e.  B  ( A  e.  x  /\  ph )  <->  E. x ( x  e.  B  /\  ( A  e.  x  /\  ph ) ) )
6 an12 561 . . . 4  |-  ( ( x  e.  B  /\  ( A  e.  x  /\  ph ) )  <->  ( A  e.  x  /\  (
x  e.  B  /\  ph ) ) )
76exbii 1615 . . 3  |-  ( E. x ( x  e.  B  /\  ( A  e.  x  /\  ph ) )  <->  E. x
( A  e.  x  /\  ( x  e.  B  /\  ph ) ) )
85, 7bitri 184 . 2  |-  ( E. x  e.  B  ( A  e.  x  /\  ph )  <->  E. x ( A  e.  x  /\  (
x  e.  B  /\  ph ) ) )
91, 4, 83bitr4i 212 1  |-  ( A  e.  U. { x  e.  B  |  ph }  <->  E. x  e.  B  ( A  e.  x  /\  ph ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105   E.wex 1502    e. wcel 2158   {cab 2173   E.wrex 2466   {crab 2469   U.cuni 3821
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-ext 2169
This theorem depends on definitions:  df-bi 117  df-tru 1366  df-nf 1471  df-sb 1773  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-rex 2471  df-rab 2474  df-v 2751  df-uni 3822
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator