Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elunirab | Unicode version |
Description: Membership in union of a class abstraction. (Contributed by NM, 4-Oct-2006.) |
Ref | Expression |
---|---|
elunirab |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eluniab 3808 | . 2 | |
2 | df-rab 2457 | . . . 4 | |
3 | 2 | unieqi 3806 | . . 3 |
4 | 3 | eleq2i 2237 | . 2 |
5 | df-rex 2454 | . . 3 | |
6 | an12 556 | . . . 4 | |
7 | 6 | exbii 1598 | . . 3 |
8 | 5, 7 | bitri 183 | . 2 |
9 | 1, 4, 8 | 3bitr4i 211 | 1 |
Colors of variables: wff set class |
Syntax hints: wa 103 wb 104 wex 1485 wcel 2141 cab 2156 wrex 2449 crab 2452 cuni 3796 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-rex 2454 df-rab 2457 df-v 2732 df-uni 3797 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |