Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elunirab | Unicode version |
Description: Membership in union of a class abstraction. (Contributed by NM, 4-Oct-2006.) |
Ref | Expression |
---|---|
elunirab |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eluniab 3780 | . 2 | |
2 | df-rab 2441 | . . . 4 | |
3 | 2 | unieqi 3778 | . . 3 |
4 | 3 | eleq2i 2221 | . 2 |
5 | df-rex 2438 | . . 3 | |
6 | an12 551 | . . . 4 | |
7 | 6 | exbii 1582 | . . 3 |
8 | 5, 7 | bitri 183 | . 2 |
9 | 1, 4, 8 | 3bitr4i 211 | 1 |
Colors of variables: wff set class |
Syntax hints: wa 103 wb 104 wex 1469 wcel 2125 cab 2140 wrex 2433 crab 2436 cuni 3768 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1424 ax-7 1425 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-8 1481 ax-10 1482 ax-11 1483 ax-i12 1484 ax-bndl 1486 ax-4 1487 ax-17 1503 ax-i9 1507 ax-ial 1511 ax-i5r 1512 ax-ext 2136 |
This theorem depends on definitions: df-bi 116 df-tru 1335 df-nf 1438 df-sb 1740 df-clab 2141 df-cleq 2147 df-clel 2150 df-nfc 2285 df-rex 2438 df-rab 2441 df-v 2711 df-uni 3769 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |