ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elunirab Unicode version

Theorem elunirab 3863
Description: Membership in union of a class abstraction. (Contributed by NM, 4-Oct-2006.)
Assertion
Ref Expression
elunirab  |-  ( A  e.  U. { x  e.  B  |  ph }  <->  E. x  e.  B  ( A  e.  x  /\  ph ) )
Distinct variable group:    x, A
Allowed substitution hints:    ph( x)    B( x)

Proof of Theorem elunirab
StepHypRef Expression
1 eluniab 3862 . 2  |-  ( A  e.  U. { x  |  ( x  e.  B  /\  ph ) } 
<->  E. x ( A  e.  x  /\  (
x  e.  B  /\  ph ) ) )
2 df-rab 2493 . . . 4  |-  { x  e.  B  |  ph }  =  { x  |  ( x  e.  B  /\  ph ) }
32unieqi 3860 . . 3  |-  U. {
x  e.  B  |  ph }  =  U. {
x  |  ( x  e.  B  /\  ph ) }
43eleq2i 2272 . 2  |-  ( A  e.  U. { x  e.  B  |  ph }  <->  A  e.  U. { x  |  ( x  e.  B  /\  ph ) } )
5 df-rex 2490 . . 3  |-  ( E. x  e.  B  ( A  e.  x  /\  ph )  <->  E. x ( x  e.  B  /\  ( A  e.  x  /\  ph ) ) )
6 an12 561 . . . 4  |-  ( ( x  e.  B  /\  ( A  e.  x  /\  ph ) )  <->  ( A  e.  x  /\  (
x  e.  B  /\  ph ) ) )
76exbii 1628 . . 3  |-  ( E. x ( x  e.  B  /\  ( A  e.  x  /\  ph ) )  <->  E. x
( A  e.  x  /\  ( x  e.  B  /\  ph ) ) )
85, 7bitri 184 . 2  |-  ( E. x  e.  B  ( A  e.  x  /\  ph )  <->  E. x ( A  e.  x  /\  (
x  e.  B  /\  ph ) ) )
91, 4, 83bitr4i 212 1  |-  ( A  e.  U. { x  e.  B  |  ph }  <->  E. x  e.  B  ( A  e.  x  /\  ph ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105   E.wex 1515    e. wcel 2176   {cab 2191   E.wrex 2485   {crab 2488   U.cuni 3850
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-rex 2490  df-rab 2493  df-v 2774  df-uni 3851
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator