| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elunirab | GIF version | ||
| Description: Membership in union of a class abstraction. (Contributed by NM, 4-Oct-2006.) |
| Ref | Expression |
|---|---|
| elunirab | ⊢ (𝐴 ∈ ∪ {𝑥 ∈ 𝐵 ∣ 𝜑} ↔ ∃𝑥 ∈ 𝐵 (𝐴 ∈ 𝑥 ∧ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eluniab 3871 | . 2 ⊢ (𝐴 ∈ ∪ {𝑥 ∣ (𝑥 ∈ 𝐵 ∧ 𝜑)} ↔ ∃𝑥(𝐴 ∈ 𝑥 ∧ (𝑥 ∈ 𝐵 ∧ 𝜑))) | |
| 2 | df-rab 2494 | . . . 4 ⊢ {𝑥 ∈ 𝐵 ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ 𝐵 ∧ 𝜑)} | |
| 3 | 2 | unieqi 3869 | . . 3 ⊢ ∪ {𝑥 ∈ 𝐵 ∣ 𝜑} = ∪ {𝑥 ∣ (𝑥 ∈ 𝐵 ∧ 𝜑)} |
| 4 | 3 | eleq2i 2273 | . 2 ⊢ (𝐴 ∈ ∪ {𝑥 ∈ 𝐵 ∣ 𝜑} ↔ 𝐴 ∈ ∪ {𝑥 ∣ (𝑥 ∈ 𝐵 ∧ 𝜑)}) |
| 5 | df-rex 2491 | . . 3 ⊢ (∃𝑥 ∈ 𝐵 (𝐴 ∈ 𝑥 ∧ 𝜑) ↔ ∃𝑥(𝑥 ∈ 𝐵 ∧ (𝐴 ∈ 𝑥 ∧ 𝜑))) | |
| 6 | an12 561 | . . . 4 ⊢ ((𝑥 ∈ 𝐵 ∧ (𝐴 ∈ 𝑥 ∧ 𝜑)) ↔ (𝐴 ∈ 𝑥 ∧ (𝑥 ∈ 𝐵 ∧ 𝜑))) | |
| 7 | 6 | exbii 1629 | . . 3 ⊢ (∃𝑥(𝑥 ∈ 𝐵 ∧ (𝐴 ∈ 𝑥 ∧ 𝜑)) ↔ ∃𝑥(𝐴 ∈ 𝑥 ∧ (𝑥 ∈ 𝐵 ∧ 𝜑))) |
| 8 | 5, 7 | bitri 184 | . 2 ⊢ (∃𝑥 ∈ 𝐵 (𝐴 ∈ 𝑥 ∧ 𝜑) ↔ ∃𝑥(𝐴 ∈ 𝑥 ∧ (𝑥 ∈ 𝐵 ∧ 𝜑))) |
| 9 | 1, 4, 8 | 3bitr4i 212 | 1 ⊢ (𝐴 ∈ ∪ {𝑥 ∈ 𝐵 ∣ 𝜑} ↔ ∃𝑥 ∈ 𝐵 (𝐴 ∈ 𝑥 ∧ 𝜑)) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 ∃wex 1516 ∈ wcel 2177 {cab 2192 ∃wrex 2486 {crab 2489 ∪ cuni 3859 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-rex 2491 df-rab 2494 df-v 2775 df-uni 3860 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |