ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elunirab GIF version

Theorem elunirab 3785
Description: Membership in union of a class abstraction. (Contributed by NM, 4-Oct-2006.)
Assertion
Ref Expression
elunirab (𝐴 {𝑥𝐵𝜑} ↔ ∃𝑥𝐵 (𝐴𝑥𝜑))
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)

Proof of Theorem elunirab
StepHypRef Expression
1 eluniab 3784 . 2 (𝐴 {𝑥 ∣ (𝑥𝐵𝜑)} ↔ ∃𝑥(𝐴𝑥 ∧ (𝑥𝐵𝜑)))
2 df-rab 2444 . . . 4 {𝑥𝐵𝜑} = {𝑥 ∣ (𝑥𝐵𝜑)}
32unieqi 3782 . . 3 {𝑥𝐵𝜑} = {𝑥 ∣ (𝑥𝐵𝜑)}
43eleq2i 2224 . 2 (𝐴 {𝑥𝐵𝜑} ↔ 𝐴 {𝑥 ∣ (𝑥𝐵𝜑)})
5 df-rex 2441 . . 3 (∃𝑥𝐵 (𝐴𝑥𝜑) ↔ ∃𝑥(𝑥𝐵 ∧ (𝐴𝑥𝜑)))
6 an12 551 . . . 4 ((𝑥𝐵 ∧ (𝐴𝑥𝜑)) ↔ (𝐴𝑥 ∧ (𝑥𝐵𝜑)))
76exbii 1585 . . 3 (∃𝑥(𝑥𝐵 ∧ (𝐴𝑥𝜑)) ↔ ∃𝑥(𝐴𝑥 ∧ (𝑥𝐵𝜑)))
85, 7bitri 183 . 2 (∃𝑥𝐵 (𝐴𝑥𝜑) ↔ ∃𝑥(𝐴𝑥 ∧ (𝑥𝐵𝜑)))
91, 4, 83bitr4i 211 1 (𝐴 {𝑥𝐵𝜑} ↔ ∃𝑥𝐵 (𝐴𝑥𝜑))
Colors of variables: wff set class
Syntax hints:  wa 103  wb 104  wex 1472  wcel 2128  {cab 2143  wrex 2436  {crab 2439   cuni 3772
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2139
This theorem depends on definitions:  df-bi 116  df-tru 1338  df-nf 1441  df-sb 1743  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-rex 2441  df-rab 2444  df-v 2714  df-uni 3773
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator