ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elunirab GIF version

Theorem elunirab 3824
Description: Membership in union of a class abstraction. (Contributed by NM, 4-Oct-2006.)
Assertion
Ref Expression
elunirab (𝐴 {𝑥𝐵𝜑} ↔ ∃𝑥𝐵 (𝐴𝑥𝜑))
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)

Proof of Theorem elunirab
StepHypRef Expression
1 eluniab 3823 . 2 (𝐴 {𝑥 ∣ (𝑥𝐵𝜑)} ↔ ∃𝑥(𝐴𝑥 ∧ (𝑥𝐵𝜑)))
2 df-rab 2464 . . . 4 {𝑥𝐵𝜑} = {𝑥 ∣ (𝑥𝐵𝜑)}
32unieqi 3821 . . 3 {𝑥𝐵𝜑} = {𝑥 ∣ (𝑥𝐵𝜑)}
43eleq2i 2244 . 2 (𝐴 {𝑥𝐵𝜑} ↔ 𝐴 {𝑥 ∣ (𝑥𝐵𝜑)})
5 df-rex 2461 . . 3 (∃𝑥𝐵 (𝐴𝑥𝜑) ↔ ∃𝑥(𝑥𝐵 ∧ (𝐴𝑥𝜑)))
6 an12 561 . . . 4 ((𝑥𝐵 ∧ (𝐴𝑥𝜑)) ↔ (𝐴𝑥 ∧ (𝑥𝐵𝜑)))
76exbii 1605 . . 3 (∃𝑥(𝑥𝐵 ∧ (𝐴𝑥𝜑)) ↔ ∃𝑥(𝐴𝑥 ∧ (𝑥𝐵𝜑)))
85, 7bitri 184 . 2 (∃𝑥𝐵 (𝐴𝑥𝜑) ↔ ∃𝑥(𝐴𝑥 ∧ (𝑥𝐵𝜑)))
91, 4, 83bitr4i 212 1 (𝐴 {𝑥𝐵𝜑} ↔ ∃𝑥𝐵 (𝐴𝑥𝜑))
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105  wex 1492  wcel 2148  {cab 2163  wrex 2456  {crab 2459   cuni 3811
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-rex 2461  df-rab 2464  df-v 2741  df-uni 3812
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator