ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elunirab GIF version

Theorem elunirab 3848
Description: Membership in union of a class abstraction. (Contributed by NM, 4-Oct-2006.)
Assertion
Ref Expression
elunirab (𝐴 {𝑥𝐵𝜑} ↔ ∃𝑥𝐵 (𝐴𝑥𝜑))
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)

Proof of Theorem elunirab
StepHypRef Expression
1 eluniab 3847 . 2 (𝐴 {𝑥 ∣ (𝑥𝐵𝜑)} ↔ ∃𝑥(𝐴𝑥 ∧ (𝑥𝐵𝜑)))
2 df-rab 2481 . . . 4 {𝑥𝐵𝜑} = {𝑥 ∣ (𝑥𝐵𝜑)}
32unieqi 3845 . . 3 {𝑥𝐵𝜑} = {𝑥 ∣ (𝑥𝐵𝜑)}
43eleq2i 2260 . 2 (𝐴 {𝑥𝐵𝜑} ↔ 𝐴 {𝑥 ∣ (𝑥𝐵𝜑)})
5 df-rex 2478 . . 3 (∃𝑥𝐵 (𝐴𝑥𝜑) ↔ ∃𝑥(𝑥𝐵 ∧ (𝐴𝑥𝜑)))
6 an12 561 . . . 4 ((𝑥𝐵 ∧ (𝐴𝑥𝜑)) ↔ (𝐴𝑥 ∧ (𝑥𝐵𝜑)))
76exbii 1616 . . 3 (∃𝑥(𝑥𝐵 ∧ (𝐴𝑥𝜑)) ↔ ∃𝑥(𝐴𝑥 ∧ (𝑥𝐵𝜑)))
85, 7bitri 184 . 2 (∃𝑥𝐵 (𝐴𝑥𝜑) ↔ ∃𝑥(𝐴𝑥 ∧ (𝑥𝐵𝜑)))
91, 4, 83bitr4i 212 1 (𝐴 {𝑥𝐵𝜑} ↔ ∃𝑥𝐵 (𝐴𝑥𝜑))
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105  wex 1503  wcel 2164  {cab 2179  wrex 2473  {crab 2476   cuni 3835
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-rex 2478  df-rab 2481  df-v 2762  df-uni 3836
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator