ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqabdv Unicode version

Theorem eqabdv 2325
Description: Deduction from a wff to a class abstraction. (Contributed by NM, 9-Jul-1994.) (Revised by Wolf Lammen, 6-May-2023.)
Hypothesis
Ref Expression
eqabdv.1  |-  ( ph  ->  ( x  e.  A  <->  ps ) )
Assertion
Ref Expression
eqabdv  |-  ( ph  ->  A  =  { x  |  ps } )
Distinct variable groups:    x, A    ph, x
Allowed substitution hint:    ps( x)

Proof of Theorem eqabdv
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 eqabdv.1 . . . 4  |-  ( ph  ->  ( x  e.  A  <->  ps ) )
21sbbidv 1899 . . 3  |-  ( ph  ->  ( [ y  /  x ] x  e.  A  <->  [ y  /  x ] ps ) )
3 clelsb1 2301 . . . 4  |-  ( [ y  /  x ]
x  e.  A  <->  y  e.  A )
43bicomi 132 . . 3  |-  ( y  e.  A  <->  [ y  /  x ] x  e.  A )
5 df-clab 2183 . . 3  |-  ( y  e.  { x  |  ps }  <->  [ y  /  x ] ps )
62, 4, 53bitr4g 223 . 2  |-  ( ph  ->  ( y  e.  A  <->  y  e.  { x  |  ps } ) )
76eqrdv 2194 1  |-  ( ph  ->  A  =  { x  |  ps } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1364   [wsb 1776    e. wcel 2167   {cab 2182
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192
This theorem is referenced by:  wrdval  10938  wrdnval  10965  dfrhm2  13710  rspsn  14090
  Copyright terms: Public domain W3C validator