| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqabdv | Unicode version | ||
| Description: Deduction from a wff to a class abstraction. (Contributed by NM, 9-Jul-1994.) (Revised by Wolf Lammen, 6-May-2023.) |
| Ref | Expression |
|---|---|
| eqabdv.1 |
|
| Ref | Expression |
|---|---|
| eqabdv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqabdv.1 |
. . . 4
| |
| 2 | 1 | sbbidv 1908 |
. . 3
|
| 3 | clelsb1 2310 |
. . . 4
| |
| 4 | 3 | bicomi 132 |
. . 3
|
| 5 | df-clab 2192 |
. . 3
| |
| 6 | 2, 4, 5 | 3bitr4g 223 |
. 2
|
| 7 | 6 | eqrdv 2203 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 |
| This theorem is referenced by: wrdval 10997 wrdnval 11024 dfrhm2 13916 rspsn 14296 |
| Copyright terms: Public domain | W3C validator |