ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rspsn Unicode version

Theorem rspsn 14506
Description: Membership in principal ideals is closely related to divisibility. (Contributed by Stefan O'Rear, 3-Jan-2015.) (Revised by Mario Carneiro, 6-May-2015.)
Hypotheses
Ref Expression
rspsn.b  |-  B  =  ( Base `  R
)
rspsn.k  |-  K  =  (RSpan `  R )
rspsn.d  |-  .||  =  (
||r `  R )
Assertion
Ref Expression
rspsn  |-  ( ( R  e.  Ring  /\  G  e.  B )  ->  ( K `  { G } )  =  {
x  |  G  .||  x } )
Distinct variable groups:    x, R    x, G    x, B    x, K    x,  .||

Proof of Theorem rspsn
Dummy variable  a is distinct from all other variables.
StepHypRef Expression
1 eqcom 2231 . . . . 5  |-  ( x  =  ( a ( .r `  R ) G )  <->  ( a
( .r `  R
) G )  =  x )
21a1i 9 . . . 4  |-  ( ( R  e.  Ring  /\  G  e.  B )  ->  (
x  =  ( a ( .r `  R
) G )  <->  ( a
( .r `  R
) G )  =  x ) )
32rexbidv 2531 . . 3  |-  ( ( R  e.  Ring  /\  G  e.  B )  ->  ( E. a  e.  B  x  =  ( a
( .r `  R
) G )  <->  E. a  e.  B  ( a
( .r `  R
) G )  =  x ) )
4 rlmlmod 14436 . . . . 5  |-  ( R  e.  Ring  ->  (ringLMod `  R
)  e.  LMod )
5 simpr 110 . . . . . 6  |-  ( ( R  e.  Ring  /\  G  e.  B )  ->  G  e.  B )
6 rspsn.b . . . . . . . 8  |-  B  =  ( Base `  R
)
7 rlmbasg 14427 . . . . . . . 8  |-  ( R  e.  Ring  ->  ( Base `  R )  =  (
Base `  (ringLMod `  R
) ) )
86, 7eqtrid 2274 . . . . . . 7  |-  ( R  e.  Ring  ->  B  =  ( Base `  (ringLMod `  R ) ) )
98adantr 276 . . . . . 6  |-  ( ( R  e.  Ring  /\  G  e.  B )  ->  B  =  ( Base `  (ringLMod `  R ) ) )
105, 9eleqtrd 2308 . . . . 5  |-  ( ( R  e.  Ring  /\  G  e.  B )  ->  G  e.  ( Base `  (ringLMod `  R ) ) )
11 eqid 2229 . . . . . 6  |-  (Scalar `  (ringLMod `  R ) )  =  (Scalar `  (ringLMod `  R ) )
12 eqid 2229 . . . . . 6  |-  ( Base `  (Scalar `  (ringLMod `  R
) ) )  =  ( Base `  (Scalar `  (ringLMod `  R )
) )
13 eqid 2229 . . . . . 6  |-  ( Base `  (ringLMod `  R )
)  =  ( Base `  (ringLMod `  R )
)
14 eqid 2229 . . . . . 6  |-  ( .s
`  (ringLMod `  R )
)  =  ( .s
`  (ringLMod `  R )
)
15 eqid 2229 . . . . . 6  |-  ( LSpan `  (ringLMod `  R )
)  =  ( LSpan `  (ringLMod `  R )
)
1611, 12, 13, 14, 15ellspsn 14389 . . . . 5  |-  ( ( (ringLMod `  R )  e.  LMod  /\  G  e.  ( Base `  (ringLMod `  R
) ) )  -> 
( x  e.  ( ( LSpan `  (ringLMod `  R
) ) `  { G } )  <->  E. a  e.  ( Base `  (Scalar `  (ringLMod `  R )
) ) x  =  ( a ( .s
`  (ringLMod `  R )
) G ) ) )
174, 10, 16syl2an2r 597 . . . 4  |-  ( ( R  e.  Ring  /\  G  e.  B )  ->  (
x  e.  ( (
LSpan `  (ringLMod `  R
) ) `  { G } )  <->  E. a  e.  ( Base `  (Scalar `  (ringLMod `  R )
) ) x  =  ( a ( .s
`  (ringLMod `  R )
) G ) ) )
18 rspsn.k . . . . . . . 8  |-  K  =  (RSpan `  R )
19 rspvalg 14444 . . . . . . . 8  |-  ( R  e.  Ring  ->  (RSpan `  R )  =  (
LSpan `  (ringLMod `  R
) ) )
2018, 19eqtrid 2274 . . . . . . 7  |-  ( R  e.  Ring  ->  K  =  ( LSpan `  (ringLMod `  R
) ) )
2120adantr 276 . . . . . 6  |-  ( ( R  e.  Ring  /\  G  e.  B )  ->  K  =  ( LSpan `  (ringLMod `  R ) ) )
2221fveq1d 5631 . . . . 5  |-  ( ( R  e.  Ring  /\  G  e.  B )  ->  ( K `  { G } )  =  ( ( LSpan `  (ringLMod `  R
) ) `  { G } ) )
2322eleq2d 2299 . . . 4  |-  ( ( R  e.  Ring  /\  G  e.  B )  ->  (
x  e.  ( K `
 { G }
)  <->  x  e.  (
( LSpan `  (ringLMod `  R
) ) `  { G } ) ) )
24 rlmscabas 14432 . . . . . . 7  |-  ( R  e.  Ring  ->  ( Base `  R )  =  (
Base `  (Scalar `  (ringLMod `  R ) ) ) )
256, 24eqtrid 2274 . . . . . 6  |-  ( R  e.  Ring  ->  B  =  ( Base `  (Scalar `  (ringLMod `  R )
) ) )
2625adantr 276 . . . . 5  |-  ( ( R  e.  Ring  /\  G  e.  B )  ->  B  =  ( Base `  (Scalar `  (ringLMod `  R )
) ) )
27 rlmvscag 14433 . . . . . . . 8  |-  ( R  e.  Ring  ->  ( .r
`  R )  =  ( .s `  (ringLMod `  R ) ) )
2827adantr 276 . . . . . . 7  |-  ( ( R  e.  Ring  /\  G  e.  B )  ->  ( .r `  R )  =  ( .s `  (ringLMod `  R ) ) )
2928oveqd 6024 . . . . . 6  |-  ( ( R  e.  Ring  /\  G  e.  B )  ->  (
a ( .r `  R ) G )  =  ( a ( .s `  (ringLMod `  R
) ) G ) )
3029eqeq2d 2241 . . . . 5  |-  ( ( R  e.  Ring  /\  G  e.  B )  ->  (
x  =  ( a ( .r `  R
) G )  <->  x  =  ( a ( .s
`  (ringLMod `  R )
) G ) ) )
3126, 30rexeqbidv 2745 . . . 4  |-  ( ( R  e.  Ring  /\  G  e.  B )  ->  ( E. a  e.  B  x  =  ( a
( .r `  R
) G )  <->  E. a  e.  ( Base `  (Scalar `  (ringLMod `  R )
) ) x  =  ( a ( .s
`  (ringLMod `  R )
) G ) ) )
3217, 23, 313bitr4d 220 . . 3  |-  ( ( R  e.  Ring  /\  G  e.  B )  ->  (
x  e.  ( K `
 { G }
)  <->  E. a  e.  B  x  =  ( a
( .r `  R
) G ) ) )
336a1i 9 . . . 4  |-  ( ( R  e.  Ring  /\  G  e.  B )  ->  B  =  ( Base `  R
) )
34 rspsn.d . . . . 5  |-  .||  =  (
||r `  R )
3534a1i 9 . . . 4  |-  ( ( R  e.  Ring  /\  G  e.  B )  ->  .||  =  (
||r `  R ) )
36 ringsrg 14018 . . . . 5  |-  ( R  e.  Ring  ->  R  e. SRing
)
3736adantr 276 . . . 4  |-  ( ( R  e.  Ring  /\  G  e.  B )  ->  R  e. SRing )
38 eqid 2229 . . . . 5  |-  ( .r
`  R )  =  ( .r `  R
)
3938a1i 9 . . . 4  |-  ( ( R  e.  Ring  /\  G  e.  B )  ->  ( .r `  R )  =  ( .r `  R
) )
4033, 35, 37, 39, 5dvdsr2d 14067 . . 3  |-  ( ( R  e.  Ring  /\  G  e.  B )  ->  ( G  .||  x  <->  E. a  e.  B  ( a
( .r `  R
) G )  =  x ) )
413, 32, 403bitr4d 220 . 2  |-  ( ( R  e.  Ring  /\  G  e.  B )  ->  (
x  e.  ( K `
 { G }
)  <->  G  .||  x ) )
4241eqabdv 2358 1  |-  ( ( R  e.  Ring  /\  G  e.  B )  ->  ( K `  { G } )  =  {
x  |  G  .||  x } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1395    e. wcel 2200   {cab 2215   E.wrex 2509   {csn 3666   class class class wbr 4083   ` cfv 5318  (class class class)co 6007   Basecbs 13040   .rcmulr 13119  Scalarcsca 13121   .scvsca 13122  SRingcsrg 13934   Ringcrg 13967   ||rcdsr 14057   LModclmod 14259   LSpanclspn 14358  ringLModcrglmod 14406  RSpancrsp 14440
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8098  ax-resscn 8099  ax-1cn 8100  ax-1re 8101  ax-icn 8102  ax-addcl 8103  ax-addrcl 8104  ax-mulcl 8105  ax-addcom 8107  ax-addass 8109  ax-i2m1 8112  ax-0lt1 8113  ax-0id 8115  ax-rnegex 8116  ax-pre-ltirr 8119  ax-pre-lttrn 8121  ax-pre-ltadd 8123
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-riota 5960  df-ov 6010  df-oprab 6011  df-mpo 6012  df-1st 6292  df-2nd 6293  df-pnf 8191  df-mnf 8192  df-ltxr 8194  df-inn 9119  df-2 9177  df-3 9178  df-4 9179  df-5 9180  df-6 9181  df-7 9182  df-8 9183  df-ndx 13043  df-slot 13044  df-base 13046  df-sets 13047  df-iress 13048  df-plusg 13131  df-mulr 13132  df-sca 13134  df-vsca 13135  df-ip 13136  df-0g 13299  df-mgm 13397  df-sgrp 13443  df-mnd 13458  df-grp 13544  df-minusg 13545  df-sbg 13546  df-subg 13715  df-cmn 13831  df-abl 13832  df-mgp 13892  df-ur 13931  df-srg 13935  df-ring 13969  df-dvdsr 14060  df-subrg 14191  df-lmod 14261  df-lssm 14325  df-lsp 14359  df-sra 14407  df-rgmod 14408  df-rsp 14442
This theorem is referenced by:  zndvds  14621
  Copyright terms: Public domain W3C validator