ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rspsn Unicode version

Theorem rspsn 14483
Description: Membership in principal ideals is closely related to divisibility. (Contributed by Stefan O'Rear, 3-Jan-2015.) (Revised by Mario Carneiro, 6-May-2015.)
Hypotheses
Ref Expression
rspsn.b  |-  B  =  ( Base `  R
)
rspsn.k  |-  K  =  (RSpan `  R )
rspsn.d  |-  .||  =  (
||r `  R )
Assertion
Ref Expression
rspsn  |-  ( ( R  e.  Ring  /\  G  e.  B )  ->  ( K `  { G } )  =  {
x  |  G  .||  x } )
Distinct variable groups:    x, R    x, G    x, B    x, K    x,  .||

Proof of Theorem rspsn
Dummy variable  a is distinct from all other variables.
StepHypRef Expression
1 eqcom 2231 . . . . 5  |-  ( x  =  ( a ( .r `  R ) G )  <->  ( a
( .r `  R
) G )  =  x )
21a1i 9 . . . 4  |-  ( ( R  e.  Ring  /\  G  e.  B )  ->  (
x  =  ( a ( .r `  R
) G )  <->  ( a
( .r `  R
) G )  =  x ) )
32rexbidv 2531 . . 3  |-  ( ( R  e.  Ring  /\  G  e.  B )  ->  ( E. a  e.  B  x  =  ( a
( .r `  R
) G )  <->  E. a  e.  B  ( a
( .r `  R
) G )  =  x ) )
4 rlmlmod 14413 . . . . 5  |-  ( R  e.  Ring  ->  (ringLMod `  R
)  e.  LMod )
5 simpr 110 . . . . . 6  |-  ( ( R  e.  Ring  /\  G  e.  B )  ->  G  e.  B )
6 rspsn.b . . . . . . . 8  |-  B  =  ( Base `  R
)
7 rlmbasg 14404 . . . . . . . 8  |-  ( R  e.  Ring  ->  ( Base `  R )  =  (
Base `  (ringLMod `  R
) ) )
86, 7eqtrid 2274 . . . . . . 7  |-  ( R  e.  Ring  ->  B  =  ( Base `  (ringLMod `  R ) ) )
98adantr 276 . . . . . 6  |-  ( ( R  e.  Ring  /\  G  e.  B )  ->  B  =  ( Base `  (ringLMod `  R ) ) )
105, 9eleqtrd 2308 . . . . 5  |-  ( ( R  e.  Ring  /\  G  e.  B )  ->  G  e.  ( Base `  (ringLMod `  R ) ) )
11 eqid 2229 . . . . . 6  |-  (Scalar `  (ringLMod `  R ) )  =  (Scalar `  (ringLMod `  R ) )
12 eqid 2229 . . . . . 6  |-  ( Base `  (Scalar `  (ringLMod `  R
) ) )  =  ( Base `  (Scalar `  (ringLMod `  R )
) )
13 eqid 2229 . . . . . 6  |-  ( Base `  (ringLMod `  R )
)  =  ( Base `  (ringLMod `  R )
)
14 eqid 2229 . . . . . 6  |-  ( .s
`  (ringLMod `  R )
)  =  ( .s
`  (ringLMod `  R )
)
15 eqid 2229 . . . . . 6  |-  ( LSpan `  (ringLMod `  R )
)  =  ( LSpan `  (ringLMod `  R )
)
1611, 12, 13, 14, 15ellspsn 14366 . . . . 5  |-  ( ( (ringLMod `  R )  e.  LMod  /\  G  e.  ( Base `  (ringLMod `  R
) ) )  -> 
( x  e.  ( ( LSpan `  (ringLMod `  R
) ) `  { G } )  <->  E. a  e.  ( Base `  (Scalar `  (ringLMod `  R )
) ) x  =  ( a ( .s
`  (ringLMod `  R )
) G ) ) )
174, 10, 16syl2an2r 597 . . . 4  |-  ( ( R  e.  Ring  /\  G  e.  B )  ->  (
x  e.  ( (
LSpan `  (ringLMod `  R
) ) `  { G } )  <->  E. a  e.  ( Base `  (Scalar `  (ringLMod `  R )
) ) x  =  ( a ( .s
`  (ringLMod `  R )
) G ) ) )
18 rspsn.k . . . . . . . 8  |-  K  =  (RSpan `  R )
19 rspvalg 14421 . . . . . . . 8  |-  ( R  e.  Ring  ->  (RSpan `  R )  =  (
LSpan `  (ringLMod `  R
) ) )
2018, 19eqtrid 2274 . . . . . . 7  |-  ( R  e.  Ring  ->  K  =  ( LSpan `  (ringLMod `  R
) ) )
2120adantr 276 . . . . . 6  |-  ( ( R  e.  Ring  /\  G  e.  B )  ->  K  =  ( LSpan `  (ringLMod `  R ) ) )
2221fveq1d 5625 . . . . 5  |-  ( ( R  e.  Ring  /\  G  e.  B )  ->  ( K `  { G } )  =  ( ( LSpan `  (ringLMod `  R
) ) `  { G } ) )
2322eleq2d 2299 . . . 4  |-  ( ( R  e.  Ring  /\  G  e.  B )  ->  (
x  e.  ( K `
 { G }
)  <->  x  e.  (
( LSpan `  (ringLMod `  R
) ) `  { G } ) ) )
24 rlmscabas 14409 . . . . . . 7  |-  ( R  e.  Ring  ->  ( Base `  R )  =  (
Base `  (Scalar `  (ringLMod `  R ) ) ) )
256, 24eqtrid 2274 . . . . . 6  |-  ( R  e.  Ring  ->  B  =  ( Base `  (Scalar `  (ringLMod `  R )
) ) )
2625adantr 276 . . . . 5  |-  ( ( R  e.  Ring  /\  G  e.  B )  ->  B  =  ( Base `  (Scalar `  (ringLMod `  R )
) ) )
27 rlmvscag 14410 . . . . . . . 8  |-  ( R  e.  Ring  ->  ( .r
`  R )  =  ( .s `  (ringLMod `  R ) ) )
2827adantr 276 . . . . . . 7  |-  ( ( R  e.  Ring  /\  G  e.  B )  ->  ( .r `  R )  =  ( .s `  (ringLMod `  R ) ) )
2928oveqd 6011 . . . . . 6  |-  ( ( R  e.  Ring  /\  G  e.  B )  ->  (
a ( .r `  R ) G )  =  ( a ( .s `  (ringLMod `  R
) ) G ) )
3029eqeq2d 2241 . . . . 5  |-  ( ( R  e.  Ring  /\  G  e.  B )  ->  (
x  =  ( a ( .r `  R
) G )  <->  x  =  ( a ( .s
`  (ringLMod `  R )
) G ) ) )
3126, 30rexeqbidv 2745 . . . 4  |-  ( ( R  e.  Ring  /\  G  e.  B )  ->  ( E. a  e.  B  x  =  ( a
( .r `  R
) G )  <->  E. a  e.  ( Base `  (Scalar `  (ringLMod `  R )
) ) x  =  ( a ( .s
`  (ringLMod `  R )
) G ) ) )
3217, 23, 313bitr4d 220 . . 3  |-  ( ( R  e.  Ring  /\  G  e.  B )  ->  (
x  e.  ( K `
 { G }
)  <->  E. a  e.  B  x  =  ( a
( .r `  R
) G ) ) )
336a1i 9 . . . 4  |-  ( ( R  e.  Ring  /\  G  e.  B )  ->  B  =  ( Base `  R
) )
34 rspsn.d . . . . 5  |-  .||  =  (
||r `  R )
3534a1i 9 . . . 4  |-  ( ( R  e.  Ring  /\  G  e.  B )  ->  .||  =  (
||r `  R ) )
36 ringsrg 13996 . . . . 5  |-  ( R  e.  Ring  ->  R  e. SRing
)
3736adantr 276 . . . 4  |-  ( ( R  e.  Ring  /\  G  e.  B )  ->  R  e. SRing )
38 eqid 2229 . . . . 5  |-  ( .r
`  R )  =  ( .r `  R
)
3938a1i 9 . . . 4  |-  ( ( R  e.  Ring  /\  G  e.  B )  ->  ( .r `  R )  =  ( .r `  R
) )
4033, 35, 37, 39, 5dvdsr2d 14044 . . 3  |-  ( ( R  e.  Ring  /\  G  e.  B )  ->  ( G  .||  x  <->  E. a  e.  B  ( a
( .r `  R
) G )  =  x ) )
413, 32, 403bitr4d 220 . 2  |-  ( ( R  e.  Ring  /\  G  e.  B )  ->  (
x  e.  ( K `
 { G }
)  <->  G  .||  x ) )
4241eqabdv 2358 1  |-  ( ( R  e.  Ring  /\  G  e.  B )  ->  ( K `  { G } )  =  {
x  |  G  .||  x } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1395    e. wcel 2200   {cab 2215   E.wrex 2509   {csn 3666   class class class wbr 4082   ` cfv 5314  (class class class)co 5994   Basecbs 13018   .rcmulr 13097  Scalarcsca 13099   .scvsca 13100  SRingcsrg 13912   Ringcrg 13945   ||rcdsr 14035   LModclmod 14236   LSpanclspn 14335  ringLModcrglmod 14383  RSpancrsp 14417
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4521  ax-setind 4626  ax-cnex 8078  ax-resscn 8079  ax-1cn 8080  ax-1re 8081  ax-icn 8082  ax-addcl 8083  ax-addrcl 8084  ax-mulcl 8085  ax-addcom 8087  ax-addass 8089  ax-i2m1 8092  ax-0lt1 8093  ax-0id 8095  ax-rnegex 8096  ax-pre-ltirr 8099  ax-pre-lttrn 8101  ax-pre-ltadd 8103
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4381  df-xp 4722  df-rel 4723  df-cnv 4724  df-co 4725  df-dm 4726  df-rn 4727  df-res 4728  df-ima 4729  df-iota 5274  df-fun 5316  df-fn 5317  df-f 5318  df-f1 5319  df-fo 5320  df-f1o 5321  df-fv 5322  df-riota 5947  df-ov 5997  df-oprab 5998  df-mpo 5999  df-1st 6276  df-2nd 6277  df-pnf 8171  df-mnf 8172  df-ltxr 8174  df-inn 9099  df-2 9157  df-3 9158  df-4 9159  df-5 9160  df-6 9161  df-7 9162  df-8 9163  df-ndx 13021  df-slot 13022  df-base 13024  df-sets 13025  df-iress 13026  df-plusg 13109  df-mulr 13110  df-sca 13112  df-vsca 13113  df-ip 13114  df-0g 13277  df-mgm 13375  df-sgrp 13421  df-mnd 13436  df-grp 13522  df-minusg 13523  df-sbg 13524  df-subg 13693  df-cmn 13809  df-abl 13810  df-mgp 13870  df-ur 13909  df-srg 13913  df-ring 13947  df-dvdsr 14038  df-subrg 14168  df-lmod 14238  df-lssm 14302  df-lsp 14336  df-sra 14384  df-rgmod 14385  df-rsp 14419
This theorem is referenced by:  zndvds  14598
  Copyright terms: Public domain W3C validator