ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rspsn Unicode version

Theorem rspsn 14066
Description: Membership in principal ideals is closely related to divisibility. (Contributed by Stefan O'Rear, 3-Jan-2015.) (Revised by Mario Carneiro, 6-May-2015.)
Hypotheses
Ref Expression
rspsn.b  |-  B  =  ( Base `  R
)
rspsn.k  |-  K  =  (RSpan `  R )
rspsn.d  |-  .||  =  (
||r `  R )
Assertion
Ref Expression
rspsn  |-  ( ( R  e.  Ring  /\  G  e.  B )  ->  ( K `  { G } )  =  {
x  |  G  .||  x } )
Distinct variable groups:    x, R    x, G    x, B    x, K    x,  .||

Proof of Theorem rspsn
Dummy variable  a is distinct from all other variables.
StepHypRef Expression
1 eqcom 2198 . . . . 5  |-  ( x  =  ( a ( .r `  R ) G )  <->  ( a
( .r `  R
) G )  =  x )
21a1i 9 . . . 4  |-  ( ( R  e.  Ring  /\  G  e.  B )  ->  (
x  =  ( a ( .r `  R
) G )  <->  ( a
( .r `  R
) G )  =  x ) )
32rexbidv 2498 . . 3  |-  ( ( R  e.  Ring  /\  G  e.  B )  ->  ( E. a  e.  B  x  =  ( a
( .r `  R
) G )  <->  E. a  e.  B  ( a
( .r `  R
) G )  =  x ) )
4 rlmlmod 13996 . . . . 5  |-  ( R  e.  Ring  ->  (ringLMod `  R
)  e.  LMod )
5 simpr 110 . . . . . 6  |-  ( ( R  e.  Ring  /\  G  e.  B )  ->  G  e.  B )
6 rspsn.b . . . . . . . 8  |-  B  =  ( Base `  R
)
7 rlmbasg 13987 . . . . . . . 8  |-  ( R  e.  Ring  ->  ( Base `  R )  =  (
Base `  (ringLMod `  R
) ) )
86, 7eqtrid 2241 . . . . . . 7  |-  ( R  e.  Ring  ->  B  =  ( Base `  (ringLMod `  R ) ) )
98adantr 276 . . . . . 6  |-  ( ( R  e.  Ring  /\  G  e.  B )  ->  B  =  ( Base `  (ringLMod `  R ) ) )
105, 9eleqtrd 2275 . . . . 5  |-  ( ( R  e.  Ring  /\  G  e.  B )  ->  G  e.  ( Base `  (ringLMod `  R ) ) )
11 eqid 2196 . . . . . 6  |-  (Scalar `  (ringLMod `  R ) )  =  (Scalar `  (ringLMod `  R ) )
12 eqid 2196 . . . . . 6  |-  ( Base `  (Scalar `  (ringLMod `  R
) ) )  =  ( Base `  (Scalar `  (ringLMod `  R )
) )
13 eqid 2196 . . . . . 6  |-  ( Base `  (ringLMod `  R )
)  =  ( Base `  (ringLMod `  R )
)
14 eqid 2196 . . . . . 6  |-  ( .s
`  (ringLMod `  R )
)  =  ( .s
`  (ringLMod `  R )
)
15 eqid 2196 . . . . . 6  |-  ( LSpan `  (ringLMod `  R )
)  =  ( LSpan `  (ringLMod `  R )
)
1611, 12, 13, 14, 15ellspsn 13949 . . . . 5  |-  ( ( (ringLMod `  R )  e.  LMod  /\  G  e.  ( Base `  (ringLMod `  R
) ) )  -> 
( x  e.  ( ( LSpan `  (ringLMod `  R
) ) `  { G } )  <->  E. a  e.  ( Base `  (Scalar `  (ringLMod `  R )
) ) x  =  ( a ( .s
`  (ringLMod `  R )
) G ) ) )
174, 10, 16syl2an2r 595 . . . 4  |-  ( ( R  e.  Ring  /\  G  e.  B )  ->  (
x  e.  ( (
LSpan `  (ringLMod `  R
) ) `  { G } )  <->  E. a  e.  ( Base `  (Scalar `  (ringLMod `  R )
) ) x  =  ( a ( .s
`  (ringLMod `  R )
) G ) ) )
18 rspsn.k . . . . . . . 8  |-  K  =  (RSpan `  R )
19 rspvalg 14004 . . . . . . . 8  |-  ( R  e.  Ring  ->  (RSpan `  R )  =  (
LSpan `  (ringLMod `  R
) ) )
2018, 19eqtrid 2241 . . . . . . 7  |-  ( R  e.  Ring  ->  K  =  ( LSpan `  (ringLMod `  R
) ) )
2120adantr 276 . . . . . 6  |-  ( ( R  e.  Ring  /\  G  e.  B )  ->  K  =  ( LSpan `  (ringLMod `  R ) ) )
2221fveq1d 5560 . . . . 5  |-  ( ( R  e.  Ring  /\  G  e.  B )  ->  ( K `  { G } )  =  ( ( LSpan `  (ringLMod `  R
) ) `  { G } ) )
2322eleq2d 2266 . . . 4  |-  ( ( R  e.  Ring  /\  G  e.  B )  ->  (
x  e.  ( K `
 { G }
)  <->  x  e.  (
( LSpan `  (ringLMod `  R
) ) `  { G } ) ) )
24 rlmscabas 13992 . . . . . . 7  |-  ( R  e.  Ring  ->  ( Base `  R )  =  (
Base `  (Scalar `  (ringLMod `  R ) ) ) )
256, 24eqtrid 2241 . . . . . 6  |-  ( R  e.  Ring  ->  B  =  ( Base `  (Scalar `  (ringLMod `  R )
) ) )
2625adantr 276 . . . . 5  |-  ( ( R  e.  Ring  /\  G  e.  B )  ->  B  =  ( Base `  (Scalar `  (ringLMod `  R )
) ) )
27 rlmvscag 13993 . . . . . . . 8  |-  ( R  e.  Ring  ->  ( .r
`  R )  =  ( .s `  (ringLMod `  R ) ) )
2827adantr 276 . . . . . . 7  |-  ( ( R  e.  Ring  /\  G  e.  B )  ->  ( .r `  R )  =  ( .s `  (ringLMod `  R ) ) )
2928oveqd 5939 . . . . . 6  |-  ( ( R  e.  Ring  /\  G  e.  B )  ->  (
a ( .r `  R ) G )  =  ( a ( .s `  (ringLMod `  R
) ) G ) )
3029eqeq2d 2208 . . . . 5  |-  ( ( R  e.  Ring  /\  G  e.  B )  ->  (
x  =  ( a ( .r `  R
) G )  <->  x  =  ( a ( .s
`  (ringLMod `  R )
) G ) ) )
3126, 30rexeqbidv 2710 . . . 4  |-  ( ( R  e.  Ring  /\  G  e.  B )  ->  ( E. a  e.  B  x  =  ( a
( .r `  R
) G )  <->  E. a  e.  ( Base `  (Scalar `  (ringLMod `  R )
) ) x  =  ( a ( .s
`  (ringLMod `  R )
) G ) ) )
3217, 23, 313bitr4d 220 . . 3  |-  ( ( R  e.  Ring  /\  G  e.  B )  ->  (
x  e.  ( K `
 { G }
)  <->  E. a  e.  B  x  =  ( a
( .r `  R
) G ) ) )
336a1i 9 . . . 4  |-  ( ( R  e.  Ring  /\  G  e.  B )  ->  B  =  ( Base `  R
) )
34 rspsn.d . . . . 5  |-  .||  =  (
||r `  R )
3534a1i 9 . . . 4  |-  ( ( R  e.  Ring  /\  G  e.  B )  ->  .||  =  (
||r `  R ) )
36 ringsrg 13579 . . . . 5  |-  ( R  e.  Ring  ->  R  e. SRing
)
3736adantr 276 . . . 4  |-  ( ( R  e.  Ring  /\  G  e.  B )  ->  R  e. SRing )
38 eqid 2196 . . . . 5  |-  ( .r
`  R )  =  ( .r `  R
)
3938a1i 9 . . . 4  |-  ( ( R  e.  Ring  /\  G  e.  B )  ->  ( .r `  R )  =  ( .r `  R
) )
4033, 35, 37, 39, 5dvdsr2d 13627 . . 3  |-  ( ( R  e.  Ring  /\  G  e.  B )  ->  ( G  .||  x  <->  E. a  e.  B  ( a
( .r `  R
) G )  =  x ) )
413, 32, 403bitr4d 220 . 2  |-  ( ( R  e.  Ring  /\  G  e.  B )  ->  (
x  e.  ( K `
 { G }
)  <->  G  .||  x ) )
4241eqabdv 2325 1  |-  ( ( R  e.  Ring  /\  G  e.  B )  ->  ( K `  { G } )  =  {
x  |  G  .||  x } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2167   {cab 2182   E.wrex 2476   {csn 3622   class class class wbr 4033   ` cfv 5258  (class class class)co 5922   Basecbs 12654   .rcmulr 12732  Scalarcsca 12734   .scvsca 12735  SRingcsrg 13495   Ringcrg 13528   ||rcdsr 13618   LModclmod 13819   LSpanclspn 13918  ringLModcrglmod 13966  RSpancrsp 14000
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7968  ax-resscn 7969  ax-1cn 7970  ax-1re 7971  ax-icn 7972  ax-addcl 7973  ax-addrcl 7974  ax-mulcl 7975  ax-addcom 7977  ax-addass 7979  ax-i2m1 7982  ax-0lt1 7983  ax-0id 7985  ax-rnegex 7986  ax-pre-ltirr 7989  ax-pre-lttrn 7991  ax-pre-ltadd 7993
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-pnf 8061  df-mnf 8062  df-ltxr 8064  df-inn 8988  df-2 9046  df-3 9047  df-4 9048  df-5 9049  df-6 9050  df-7 9051  df-8 9052  df-ndx 12657  df-slot 12658  df-base 12660  df-sets 12661  df-iress 12662  df-plusg 12744  df-mulr 12745  df-sca 12747  df-vsca 12748  df-ip 12749  df-0g 12905  df-mgm 12975  df-sgrp 13021  df-mnd 13034  df-grp 13111  df-minusg 13112  df-sbg 13113  df-subg 13276  df-cmn 13392  df-abl 13393  df-mgp 13453  df-ur 13492  df-srg 13496  df-ring 13530  df-dvdsr 13621  df-subrg 13751  df-lmod 13821  df-lssm 13885  df-lsp 13919  df-sra 13967  df-rgmod 13968  df-rsp 14002
This theorem is referenced by:  zndvds  14181
  Copyright terms: Public domain W3C validator