ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rspsn Unicode version

Theorem rspsn 14030
Description: Membership in principal ideals is closely related to divisibility. (Contributed by Stefan O'Rear, 3-Jan-2015.) (Revised by Mario Carneiro, 6-May-2015.)
Hypotheses
Ref Expression
rspsn.b  |-  B  =  ( Base `  R
)
rspsn.k  |-  K  =  (RSpan `  R )
rspsn.d  |-  .||  =  (
||r `  R )
Assertion
Ref Expression
rspsn  |-  ( ( R  e.  Ring  /\  G  e.  B )  ->  ( K `  { G } )  =  {
x  |  G  .||  x } )
Distinct variable groups:    x, R    x, G    x, B    x, K    x,  .||

Proof of Theorem rspsn
Dummy variable  a is distinct from all other variables.
StepHypRef Expression
1 eqcom 2195 . . . . 5  |-  ( x  =  ( a ( .r `  R ) G )  <->  ( a
( .r `  R
) G )  =  x )
21a1i 9 . . . 4  |-  ( ( R  e.  Ring  /\  G  e.  B )  ->  (
x  =  ( a ( .r `  R
) G )  <->  ( a
( .r `  R
) G )  =  x ) )
32rexbidv 2495 . . 3  |-  ( ( R  e.  Ring  /\  G  e.  B )  ->  ( E. a  e.  B  x  =  ( a
( .r `  R
) G )  <->  E. a  e.  B  ( a
( .r `  R
) G )  =  x ) )
4 rlmlmod 13960 . . . . 5  |-  ( R  e.  Ring  ->  (ringLMod `  R
)  e.  LMod )
5 simpr 110 . . . . . 6  |-  ( ( R  e.  Ring  /\  G  e.  B )  ->  G  e.  B )
6 rspsn.b . . . . . . . 8  |-  B  =  ( Base `  R
)
7 rlmbasg 13951 . . . . . . . 8  |-  ( R  e.  Ring  ->  ( Base `  R )  =  (
Base `  (ringLMod `  R
) ) )
86, 7eqtrid 2238 . . . . . . 7  |-  ( R  e.  Ring  ->  B  =  ( Base `  (ringLMod `  R ) ) )
98adantr 276 . . . . . 6  |-  ( ( R  e.  Ring  /\  G  e.  B )  ->  B  =  ( Base `  (ringLMod `  R ) ) )
105, 9eleqtrd 2272 . . . . 5  |-  ( ( R  e.  Ring  /\  G  e.  B )  ->  G  e.  ( Base `  (ringLMod `  R ) ) )
11 eqid 2193 . . . . . 6  |-  (Scalar `  (ringLMod `  R ) )  =  (Scalar `  (ringLMod `  R ) )
12 eqid 2193 . . . . . 6  |-  ( Base `  (Scalar `  (ringLMod `  R
) ) )  =  ( Base `  (Scalar `  (ringLMod `  R )
) )
13 eqid 2193 . . . . . 6  |-  ( Base `  (ringLMod `  R )
)  =  ( Base `  (ringLMod `  R )
)
14 eqid 2193 . . . . . 6  |-  ( .s
`  (ringLMod `  R )
)  =  ( .s
`  (ringLMod `  R )
)
15 eqid 2193 . . . . . 6  |-  ( LSpan `  (ringLMod `  R )
)  =  ( LSpan `  (ringLMod `  R )
)
1611, 12, 13, 14, 15ellspsn 13913 . . . . 5  |-  ( ( (ringLMod `  R )  e.  LMod  /\  G  e.  ( Base `  (ringLMod `  R
) ) )  -> 
( x  e.  ( ( LSpan `  (ringLMod `  R
) ) `  { G } )  <->  E. a  e.  ( Base `  (Scalar `  (ringLMod `  R )
) ) x  =  ( a ( .s
`  (ringLMod `  R )
) G ) ) )
174, 10, 16syl2an2r 595 . . . 4  |-  ( ( R  e.  Ring  /\  G  e.  B )  ->  (
x  e.  ( (
LSpan `  (ringLMod `  R
) ) `  { G } )  <->  E. a  e.  ( Base `  (Scalar `  (ringLMod `  R )
) ) x  =  ( a ( .s
`  (ringLMod `  R )
) G ) ) )
18 rspsn.k . . . . . . . 8  |-  K  =  (RSpan `  R )
19 rspvalg 13968 . . . . . . . 8  |-  ( R  e.  Ring  ->  (RSpan `  R )  =  (
LSpan `  (ringLMod `  R
) ) )
2018, 19eqtrid 2238 . . . . . . 7  |-  ( R  e.  Ring  ->  K  =  ( LSpan `  (ringLMod `  R
) ) )
2120adantr 276 . . . . . 6  |-  ( ( R  e.  Ring  /\  G  e.  B )  ->  K  =  ( LSpan `  (ringLMod `  R ) ) )
2221fveq1d 5556 . . . . 5  |-  ( ( R  e.  Ring  /\  G  e.  B )  ->  ( K `  { G } )  =  ( ( LSpan `  (ringLMod `  R
) ) `  { G } ) )
2322eleq2d 2263 . . . 4  |-  ( ( R  e.  Ring  /\  G  e.  B )  ->  (
x  e.  ( K `
 { G }
)  <->  x  e.  (
( LSpan `  (ringLMod `  R
) ) `  { G } ) ) )
24 rlmscabas 13956 . . . . . . 7  |-  ( R  e.  Ring  ->  ( Base `  R )  =  (
Base `  (Scalar `  (ringLMod `  R ) ) ) )
256, 24eqtrid 2238 . . . . . 6  |-  ( R  e.  Ring  ->  B  =  ( Base `  (Scalar `  (ringLMod `  R )
) ) )
2625adantr 276 . . . . 5  |-  ( ( R  e.  Ring  /\  G  e.  B )  ->  B  =  ( Base `  (Scalar `  (ringLMod `  R )
) ) )
27 rlmvscag 13957 . . . . . . . 8  |-  ( R  e.  Ring  ->  ( .r
`  R )  =  ( .s `  (ringLMod `  R ) ) )
2827adantr 276 . . . . . . 7  |-  ( ( R  e.  Ring  /\  G  e.  B )  ->  ( .r `  R )  =  ( .s `  (ringLMod `  R ) ) )
2928oveqd 5935 . . . . . 6  |-  ( ( R  e.  Ring  /\  G  e.  B )  ->  (
a ( .r `  R ) G )  =  ( a ( .s `  (ringLMod `  R
) ) G ) )
3029eqeq2d 2205 . . . . 5  |-  ( ( R  e.  Ring  /\  G  e.  B )  ->  (
x  =  ( a ( .r `  R
) G )  <->  x  =  ( a ( .s
`  (ringLMod `  R )
) G ) ) )
3126, 30rexeqbidv 2707 . . . 4  |-  ( ( R  e.  Ring  /\  G  e.  B )  ->  ( E. a  e.  B  x  =  ( a
( .r `  R
) G )  <->  E. a  e.  ( Base `  (Scalar `  (ringLMod `  R )
) ) x  =  ( a ( .s
`  (ringLMod `  R )
) G ) ) )
3217, 23, 313bitr4d 220 . . 3  |-  ( ( R  e.  Ring  /\  G  e.  B )  ->  (
x  e.  ( K `
 { G }
)  <->  E. a  e.  B  x  =  ( a
( .r `  R
) G ) ) )
336a1i 9 . . . 4  |-  ( ( R  e.  Ring  /\  G  e.  B )  ->  B  =  ( Base `  R
) )
34 rspsn.d . . . . 5  |-  .||  =  (
||r `  R )
3534a1i 9 . . . 4  |-  ( ( R  e.  Ring  /\  G  e.  B )  ->  .||  =  (
||r `  R ) )
36 ringsrg 13543 . . . . 5  |-  ( R  e.  Ring  ->  R  e. SRing
)
3736adantr 276 . . . 4  |-  ( ( R  e.  Ring  /\  G  e.  B )  ->  R  e. SRing )
38 eqid 2193 . . . . 5  |-  ( .r
`  R )  =  ( .r `  R
)
3938a1i 9 . . . 4  |-  ( ( R  e.  Ring  /\  G  e.  B )  ->  ( .r `  R )  =  ( .r `  R
) )
4033, 35, 37, 39, 5dvdsr2d 13591 . . 3  |-  ( ( R  e.  Ring  /\  G  e.  B )  ->  ( G  .||  x  <->  E. a  e.  B  ( a
( .r `  R
) G )  =  x ) )
413, 32, 403bitr4d 220 . 2  |-  ( ( R  e.  Ring  /\  G  e.  B )  ->  (
x  e.  ( K `
 { G }
)  <->  G  .||  x ) )
4241eqabdv 2322 1  |-  ( ( R  e.  Ring  /\  G  e.  B )  ->  ( K `  { G } )  =  {
x  |  G  .||  x } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2164   {cab 2179   E.wrex 2473   {csn 3618   class class class wbr 4029   ` cfv 5254  (class class class)co 5918   Basecbs 12618   .rcmulr 12696  Scalarcsca 12698   .scvsca 12699  SRingcsrg 13459   Ringcrg 13492   ||rcdsr 13582   LModclmod 13783   LSpanclspn 13882  ringLModcrglmod 13930  RSpancrsp 13964
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-addcom 7972  ax-addass 7974  ax-i2m1 7977  ax-0lt1 7978  ax-0id 7980  ax-rnegex 7981  ax-pre-ltirr 7984  ax-pre-lttrn 7986  ax-pre-ltadd 7988
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-pnf 8056  df-mnf 8057  df-ltxr 8059  df-inn 8983  df-2 9041  df-3 9042  df-4 9043  df-5 9044  df-6 9045  df-7 9046  df-8 9047  df-ndx 12621  df-slot 12622  df-base 12624  df-sets 12625  df-iress 12626  df-plusg 12708  df-mulr 12709  df-sca 12711  df-vsca 12712  df-ip 12713  df-0g 12869  df-mgm 12939  df-sgrp 12985  df-mnd 12998  df-grp 13075  df-minusg 13076  df-sbg 13077  df-subg 13240  df-cmn 13356  df-abl 13357  df-mgp 13417  df-ur 13456  df-srg 13460  df-ring 13494  df-dvdsr 13585  df-subrg 13715  df-lmod 13785  df-lssm 13849  df-lsp 13883  df-sra 13931  df-rgmod 13932  df-rsp 13966
This theorem is referenced by:  zndvds  14137
  Copyright terms: Public domain W3C validator