| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rspsn | Unicode version | ||
| Description: Membership in principal ideals is closely related to divisibility. (Contributed by Stefan O'Rear, 3-Jan-2015.) (Revised by Mario Carneiro, 6-May-2015.) |
| Ref | Expression |
|---|---|
| rspsn.b |
|
| rspsn.k |
|
| rspsn.d |
|
| Ref | Expression |
|---|---|
| rspsn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqcom 2208 |
. . . . 5
| |
| 2 | 1 | a1i 9 |
. . . 4
|
| 3 | 2 | rexbidv 2508 |
. . 3
|
| 4 | rlmlmod 14296 |
. . . . 5
| |
| 5 | simpr 110 |
. . . . . 6
| |
| 6 | rspsn.b |
. . . . . . . 8
| |
| 7 | rlmbasg 14287 |
. . . . . . . 8
| |
| 8 | 6, 7 | eqtrid 2251 |
. . . . . . 7
|
| 9 | 8 | adantr 276 |
. . . . . 6
|
| 10 | 5, 9 | eleqtrd 2285 |
. . . . 5
|
| 11 | eqid 2206 |
. . . . . 6
| |
| 12 | eqid 2206 |
. . . . . 6
| |
| 13 | eqid 2206 |
. . . . . 6
| |
| 14 | eqid 2206 |
. . . . . 6
| |
| 15 | eqid 2206 |
. . . . . 6
| |
| 16 | 11, 12, 13, 14, 15 | ellspsn 14249 |
. . . . 5
|
| 17 | 4, 10, 16 | syl2an2r 595 |
. . . 4
|
| 18 | rspsn.k |
. . . . . . . 8
| |
| 19 | rspvalg 14304 |
. . . . . . . 8
| |
| 20 | 18, 19 | eqtrid 2251 |
. . . . . . 7
|
| 21 | 20 | adantr 276 |
. . . . . 6
|
| 22 | 21 | fveq1d 5590 |
. . . . 5
|
| 23 | 22 | eleq2d 2276 |
. . . 4
|
| 24 | rlmscabas 14292 |
. . . . . . 7
| |
| 25 | 6, 24 | eqtrid 2251 |
. . . . . 6
|
| 26 | 25 | adantr 276 |
. . . . 5
|
| 27 | rlmvscag 14293 |
. . . . . . . 8
| |
| 28 | 27 | adantr 276 |
. . . . . . 7
|
| 29 | 28 | oveqd 5973 |
. . . . . 6
|
| 30 | 29 | eqeq2d 2218 |
. . . . 5
|
| 31 | 26, 30 | rexeqbidv 2720 |
. . . 4
|
| 32 | 17, 23, 31 | 3bitr4d 220 |
. . 3
|
| 33 | 6 | a1i 9 |
. . . 4
|
| 34 | rspsn.d |
. . . . 5
| |
| 35 | 34 | a1i 9 |
. . . 4
|
| 36 | ringsrg 13879 |
. . . . 5
| |
| 37 | 36 | adantr 276 |
. . . 4
|
| 38 | eqid 2206 |
. . . . 5
| |
| 39 | 38 | a1i 9 |
. . . 4
|
| 40 | 33, 35, 37, 39, 5 | dvdsr2d 13927 |
. . 3
|
| 41 | 3, 32, 40 | 3bitr4d 220 |
. 2
|
| 42 | 41 | eqabdv 2335 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4166 ax-sep 4169 ax-pow 4225 ax-pr 4260 ax-un 4487 ax-setind 4592 ax-cnex 8031 ax-resscn 8032 ax-1cn 8033 ax-1re 8034 ax-icn 8035 ax-addcl 8036 ax-addrcl 8037 ax-mulcl 8038 ax-addcom 8040 ax-addass 8042 ax-i2m1 8045 ax-0lt1 8046 ax-0id 8048 ax-rnegex 8049 ax-pre-ltirr 8052 ax-pre-lttrn 8054 ax-pre-ltadd 8056 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-pw 3622 df-sn 3643 df-pr 3644 df-op 3646 df-uni 3856 df-int 3891 df-iun 3934 df-br 4051 df-opab 4113 df-mpt 4114 df-id 4347 df-xp 4688 df-rel 4689 df-cnv 4690 df-co 4691 df-dm 4692 df-rn 4693 df-res 4694 df-ima 4695 df-iota 5240 df-fun 5281 df-fn 5282 df-f 5283 df-f1 5284 df-fo 5285 df-f1o 5286 df-fv 5287 df-riota 5911 df-ov 5959 df-oprab 5960 df-mpo 5961 df-1st 6238 df-2nd 6239 df-pnf 8124 df-mnf 8125 df-ltxr 8127 df-inn 9052 df-2 9110 df-3 9111 df-4 9112 df-5 9113 df-6 9114 df-7 9115 df-8 9116 df-ndx 12905 df-slot 12906 df-base 12908 df-sets 12909 df-iress 12910 df-plusg 12992 df-mulr 12993 df-sca 12995 df-vsca 12996 df-ip 12997 df-0g 13160 df-mgm 13258 df-sgrp 13304 df-mnd 13319 df-grp 13405 df-minusg 13406 df-sbg 13407 df-subg 13576 df-cmn 13692 df-abl 13693 df-mgp 13753 df-ur 13792 df-srg 13796 df-ring 13830 df-dvdsr 13921 df-subrg 14051 df-lmod 14121 df-lssm 14185 df-lsp 14219 df-sra 14267 df-rgmod 14268 df-rsp 14302 |
| This theorem is referenced by: zndvds 14481 |
| Copyright terms: Public domain | W3C validator |