ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfrhm2 Unicode version

Theorem dfrhm2 14031
Description: The property of a ring homomorphism can be decomposed into separate homomorphic conditions for addition and multiplication. (Contributed by Stefan O'Rear, 7-Mar-2015.)
Assertion
Ref Expression
dfrhm2  |- RingHom  =  ( r  e.  Ring ,  s  e.  Ring  |->  ( ( r  GrpHom  s )  i^i  ( (mulGrp `  r
) MndHom  (mulGrp `  s )
) ) )
Distinct variable group:    s, r

Proof of Theorem dfrhm2
Dummy variables  v  w  f  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-rhm 14029 . 2  |- RingHom  =  ( r  e.  Ring ,  s  e.  Ring  |->  [_ ( Base `  r )  / 
v ]_ [_ ( Base `  s )  /  w ]_ { f  e.  ( w  ^m  v )  |  ( ( f `
 ( 1r `  r ) )  =  ( 1r `  s
)  /\  A. x  e.  v  A. y  e.  v  ( (
f `  ( x
( +g  `  r ) y ) )  =  ( ( f `  x ) ( +g  `  s ) ( f `
 y ) )  /\  ( f `  ( x ( .r
`  r ) y ) )  =  ( ( f `  x
) ( .r `  s ) ( f `
 y ) ) ) ) } )
2 ancom 266 . . . . . . 7  |-  ( ( ( f `  ( 1r `  r ) )  =  ( 1r `  s )  /\  A. x  e.  ( Base `  r ) A. y  e.  ( Base `  r
) ( ( f `
 ( x ( +g  `  r ) y ) )  =  ( ( f `  x ) ( +g  `  s ) ( f `
 y ) )  /\  ( f `  ( x ( .r
`  r ) y ) )  =  ( ( f `  x
) ( .r `  s ) ( f `
 y ) ) ) )  <->  ( A. x  e.  ( Base `  r ) A. y  e.  ( Base `  r
) ( ( f `
 ( x ( +g  `  r ) y ) )  =  ( ( f `  x ) ( +g  `  s ) ( f `
 y ) )  /\  ( f `  ( x ( .r
`  r ) y ) )  =  ( ( f `  x
) ( .r `  s ) ( f `
 y ) ) )  /\  ( f `
 ( 1r `  r ) )  =  ( 1r `  s
) ) )
3 r19.26-2 2637 . . . . . . . 8  |-  ( A. x  e.  ( Base `  r ) A. y  e.  ( Base `  r
) ( ( f `
 ( x ( +g  `  r ) y ) )  =  ( ( f `  x ) ( +g  `  s ) ( f `
 y ) )  /\  ( f `  ( x ( .r
`  r ) y ) )  =  ( ( f `  x
) ( .r `  s ) ( f `
 y ) ) )  <->  ( A. x  e.  ( Base `  r
) A. y  e.  ( Base `  r
) ( f `  ( x ( +g  `  r ) y ) )  =  ( ( f `  x ) ( +g  `  s
) ( f `  y ) )  /\  A. x  e.  ( Base `  r ) A. y  e.  ( Base `  r
) ( f `  ( x ( .r
`  r ) y ) )  =  ( ( f `  x
) ( .r `  s ) ( f `
 y ) ) ) )
43anbi1i 458 . . . . . . 7  |-  ( ( A. x  e.  (
Base `  r ) A. y  e.  ( Base `  r ) ( ( f `  (
x ( +g  `  r
) y ) )  =  ( ( f `
 x ) ( +g  `  s ) ( f `  y
) )  /\  (
f `  ( x
( .r `  r
) y ) )  =  ( ( f `
 x ) ( .r `  s ) ( f `  y
) ) )  /\  ( f `  ( 1r `  r ) )  =  ( 1r `  s ) )  <->  ( ( A. x  e.  ( Base `  r ) A. y  e.  ( Base `  r ) ( f `
 ( x ( +g  `  r ) y ) )  =  ( ( f `  x ) ( +g  `  s ) ( f `
 y ) )  /\  A. x  e.  ( Base `  r
) A. y  e.  ( Base `  r
) ( f `  ( x ( .r
`  r ) y ) )  =  ( ( f `  x
) ( .r `  s ) ( f `
 y ) ) )  /\  ( f `
 ( 1r `  r ) )  =  ( 1r `  s
) ) )
5 anass 401 . . . . . . 7  |-  ( ( ( A. x  e.  ( Base `  r
) A. y  e.  ( Base `  r
) ( f `  ( x ( +g  `  r ) y ) )  =  ( ( f `  x ) ( +g  `  s
) ( f `  y ) )  /\  A. x  e.  ( Base `  r ) A. y  e.  ( Base `  r
) ( f `  ( x ( .r
`  r ) y ) )  =  ( ( f `  x
) ( .r `  s ) ( f `
 y ) ) )  /\  ( f `
 ( 1r `  r ) )  =  ( 1r `  s
) )  <->  ( A. x  e.  ( Base `  r ) A. y  e.  ( Base `  r
) ( f `  ( x ( +g  `  r ) y ) )  =  ( ( f `  x ) ( +g  `  s
) ( f `  y ) )  /\  ( A. x  e.  (
Base `  r ) A. y  e.  ( Base `  r ) ( f `  ( x ( .r `  r
) y ) )  =  ( ( f `
 x ) ( .r `  s ) ( f `  y
) )  /\  (
f `  ( 1r `  r ) )  =  ( 1r `  s
) ) ) )
62, 4, 53bitri 206 . . . . . 6  |-  ( ( ( f `  ( 1r `  r ) )  =  ( 1r `  s )  /\  A. x  e.  ( Base `  r ) A. y  e.  ( Base `  r
) ( ( f `
 ( x ( +g  `  r ) y ) )  =  ( ( f `  x ) ( +g  `  s ) ( f `
 y ) )  /\  ( f `  ( x ( .r
`  r ) y ) )  =  ( ( f `  x
) ( .r `  s ) ( f `
 y ) ) ) )  <->  ( A. x  e.  ( Base `  r ) A. y  e.  ( Base `  r
) ( f `  ( x ( +g  `  r ) y ) )  =  ( ( f `  x ) ( +g  `  s
) ( f `  y ) )  /\  ( A. x  e.  (
Base `  r ) A. y  e.  ( Base `  r ) ( f `  ( x ( .r `  r
) y ) )  =  ( ( f `
 x ) ( .r `  s ) ( f `  y
) )  /\  (
f `  ( 1r `  r ) )  =  ( 1r `  s
) ) ) )
76rabbii 2762 . . . . 5  |-  { f  e.  ( ( Base `  s )  ^m  ( Base `  r ) )  |  ( ( f `
 ( 1r `  r ) )  =  ( 1r `  s
)  /\  A. x  e.  ( Base `  r
) A. y  e.  ( Base `  r
) ( ( f `
 ( x ( +g  `  r ) y ) )  =  ( ( f `  x ) ( +g  `  s ) ( f `
 y ) )  /\  ( f `  ( x ( .r
`  r ) y ) )  =  ( ( f `  x
) ( .r `  s ) ( f `
 y ) ) ) ) }  =  { f  e.  ( ( Base `  s
)  ^m  ( Base `  r ) )  |  ( A. x  e.  ( Base `  r
) A. y  e.  ( Base `  r
) ( f `  ( x ( +g  `  r ) y ) )  =  ( ( f `  x ) ( +g  `  s
) ( f `  y ) )  /\  ( A. x  e.  (
Base `  r ) A. y  e.  ( Base `  r ) ( f `  ( x ( .r `  r
) y ) )  =  ( ( f `
 x ) ( .r `  s ) ( f `  y
) )  /\  (
f `  ( 1r `  r ) )  =  ( 1r `  s
) ) ) }
8 basfn 13005 . . . . . . 7  |-  Base  Fn  _V
9 vex 2779 . . . . . . 7  |-  r  e. 
_V
10 funfvex 5616 . . . . . . . 8  |-  ( ( Fun  Base  /\  r  e.  dom  Base )  ->  ( Base `  r )  e. 
_V )
1110funfni 5395 . . . . . . 7  |-  ( (
Base  Fn  _V  /\  r  e.  _V )  ->  ( Base `  r )  e. 
_V )
128, 9, 11mp2an 426 . . . . . 6  |-  ( Base `  r )  e.  _V
13 vex 2779 . . . . . . 7  |-  s  e. 
_V
14 funfvex 5616 . . . . . . . 8  |-  ( ( Fun  Base  /\  s  e.  dom  Base )  ->  ( Base `  s )  e. 
_V )
1514funfni 5395 . . . . . . 7  |-  ( (
Base  Fn  _V  /\  s  e.  _V )  ->  ( Base `  s )  e. 
_V )
168, 13, 15mp2an 426 . . . . . 6  |-  ( Base `  s )  e.  _V
17 oveq12 5976 . . . . . . . 8  |-  ( ( w  =  ( Base `  s )  /\  v  =  ( Base `  r
) )  ->  (
w  ^m  v )  =  ( ( Base `  s )  ^m  ( Base `  r ) ) )
1817ancoms 268 . . . . . . 7  |-  ( ( v  =  ( Base `  r )  /\  w  =  ( Base `  s
) )  ->  (
w  ^m  v )  =  ( ( Base `  s )  ^m  ( Base `  r ) ) )
19 raleq 2705 . . . . . . . . . 10  |-  ( v  =  ( Base `  r
)  ->  ( A. y  e.  v  (
( f `  (
x ( +g  `  r
) y ) )  =  ( ( f `
 x ) ( +g  `  s ) ( f `  y
) )  /\  (
f `  ( x
( .r `  r
) y ) )  =  ( ( f `
 x ) ( .r `  s ) ( f `  y
) ) )  <->  A. y  e.  ( Base `  r
) ( ( f `
 ( x ( +g  `  r ) y ) )  =  ( ( f `  x ) ( +g  `  s ) ( f `
 y ) )  /\  ( f `  ( x ( .r
`  r ) y ) )  =  ( ( f `  x
) ( .r `  s ) ( f `
 y ) ) ) ) )
2019raleqbi1dv 2717 . . . . . . . . 9  |-  ( v  =  ( Base `  r
)  ->  ( A. x  e.  v  A. y  e.  v  (
( f `  (
x ( +g  `  r
) y ) )  =  ( ( f `
 x ) ( +g  `  s ) ( f `  y
) )  /\  (
f `  ( x
( .r `  r
) y ) )  =  ( ( f `
 x ) ( .r `  s ) ( f `  y
) ) )  <->  A. x  e.  ( Base `  r
) A. y  e.  ( Base `  r
) ( ( f `
 ( x ( +g  `  r ) y ) )  =  ( ( f `  x ) ( +g  `  s ) ( f `
 y ) )  /\  ( f `  ( x ( .r
`  r ) y ) )  =  ( ( f `  x
) ( .r `  s ) ( f `
 y ) ) ) ) )
2120adantr 276 . . . . . . . 8  |-  ( ( v  =  ( Base `  r )  /\  w  =  ( Base `  s
) )  ->  ( A. x  e.  v  A. y  e.  v 
( ( f `  ( x ( +g  `  r ) y ) )  =  ( ( f `  x ) ( +g  `  s
) ( f `  y ) )  /\  ( f `  (
x ( .r `  r ) y ) )  =  ( ( f `  x ) ( .r `  s
) ( f `  y ) ) )  <->  A. x  e.  ( Base `  r ) A. y  e.  ( Base `  r ) ( ( f `  ( x ( +g  `  r
) y ) )  =  ( ( f `
 x ) ( +g  `  s ) ( f `  y
) )  /\  (
f `  ( x
( .r `  r
) y ) )  =  ( ( f `
 x ) ( .r `  s ) ( f `  y
) ) ) ) )
2221anbi2d 464 . . . . . . 7  |-  ( ( v  =  ( Base `  r )  /\  w  =  ( Base `  s
) )  ->  (
( ( f `  ( 1r `  r ) )  =  ( 1r
`  s )  /\  A. x  e.  v  A. y  e.  v  (
( f `  (
x ( +g  `  r
) y ) )  =  ( ( f `
 x ) ( +g  `  s ) ( f `  y
) )  /\  (
f `  ( x
( .r `  r
) y ) )  =  ( ( f `
 x ) ( .r `  s ) ( f `  y
) ) ) )  <-> 
( ( f `  ( 1r `  r ) )  =  ( 1r
`  s )  /\  A. x  e.  ( Base `  r ) A. y  e.  ( Base `  r
) ( ( f `
 ( x ( +g  `  r ) y ) )  =  ( ( f `  x ) ( +g  `  s ) ( f `
 y ) )  /\  ( f `  ( x ( .r
`  r ) y ) )  =  ( ( f `  x
) ( .r `  s ) ( f `
 y ) ) ) ) ) )
2318, 22rabeqbidv 2771 . . . . . 6  |-  ( ( v  =  ( Base `  r )  /\  w  =  ( Base `  s
) )  ->  { f  e.  ( w  ^m  v )  |  ( ( f `  ( 1r `  r ) )  =  ( 1r `  s )  /\  A. x  e.  v  A. y  e.  v  (
( f `  (
x ( +g  `  r
) y ) )  =  ( ( f `
 x ) ( +g  `  s ) ( f `  y
) )  /\  (
f `  ( x
( .r `  r
) y ) )  =  ( ( f `
 x ) ( .r `  s ) ( f `  y
) ) ) ) }  =  { f  e.  ( ( Base `  s )  ^m  ( Base `  r ) )  |  ( ( f `
 ( 1r `  r ) )  =  ( 1r `  s
)  /\  A. x  e.  ( Base `  r
) A. y  e.  ( Base `  r
) ( ( f `
 ( x ( +g  `  r ) y ) )  =  ( ( f `  x ) ( +g  `  s ) ( f `
 y ) )  /\  ( f `  ( x ( .r
`  r ) y ) )  =  ( ( f `  x
) ( .r `  s ) ( f `
 y ) ) ) ) } )
2412, 16, 23csbie2 3151 . . . . 5  |-  [_ ( Base `  r )  / 
v ]_ [_ ( Base `  s )  /  w ]_ { f  e.  ( w  ^m  v )  |  ( ( f `
 ( 1r `  r ) )  =  ( 1r `  s
)  /\  A. x  e.  v  A. y  e.  v  ( (
f `  ( x
( +g  `  r ) y ) )  =  ( ( f `  x ) ( +g  `  s ) ( f `
 y ) )  /\  ( f `  ( x ( .r
`  r ) y ) )  =  ( ( f `  x
) ( .r `  s ) ( f `
 y ) ) ) ) }  =  { f  e.  ( ( Base `  s
)  ^m  ( Base `  r ) )  |  ( ( f `  ( 1r `  r ) )  =  ( 1r
`  s )  /\  A. x  e.  ( Base `  r ) A. y  e.  ( Base `  r
) ( ( f `
 ( x ( +g  `  r ) y ) )  =  ( ( f `  x ) ( +g  `  s ) ( f `
 y ) )  /\  ( f `  ( x ( .r
`  r ) y ) )  =  ( ( f `  x
) ( .r `  s ) ( f `
 y ) ) ) ) }
25 inrab 3453 . . . . 5  |-  ( { f  e.  ( (
Base `  s )  ^m  ( Base `  r
) )  |  A. x  e.  ( Base `  r ) A. y  e.  ( Base `  r
) ( f `  ( x ( +g  `  r ) y ) )  =  ( ( f `  x ) ( +g  `  s
) ( f `  y ) ) }  i^i  { f  e.  ( ( Base `  s
)  ^m  ( Base `  r ) )  |  ( A. x  e.  ( Base `  r
) A. y  e.  ( Base `  r
) ( f `  ( x ( .r
`  r ) y ) )  =  ( ( f `  x
) ( .r `  s ) ( f `
 y ) )  /\  ( f `  ( 1r `  r ) )  =  ( 1r
`  s ) ) } )  =  {
f  e.  ( (
Base `  s )  ^m  ( Base `  r
) )  |  ( A. x  e.  (
Base `  r ) A. y  e.  ( Base `  r ) ( f `  ( x ( +g  `  r
) y ) )  =  ( ( f `
 x ) ( +g  `  s ) ( f `  y
) )  /\  ( A. x  e.  ( Base `  r ) A. y  e.  ( Base `  r ) ( f `
 ( x ( .r `  r ) y ) )  =  ( ( f `  x ) ( .r
`  s ) ( f `  y ) )  /\  ( f `
 ( 1r `  r ) )  =  ( 1r `  s
) ) ) }
267, 24, 253eqtr4i 2238 . . . 4  |-  [_ ( Base `  r )  / 
v ]_ [_ ( Base `  s )  /  w ]_ { f  e.  ( w  ^m  v )  |  ( ( f `
 ( 1r `  r ) )  =  ( 1r `  s
)  /\  A. x  e.  v  A. y  e.  v  ( (
f `  ( x
( +g  `  r ) y ) )  =  ( ( f `  x ) ( +g  `  s ) ( f `
 y ) )  /\  ( f `  ( x ( .r
`  r ) y ) )  =  ( ( f `  x
) ( .r `  s ) ( f `
 y ) ) ) ) }  =  ( { f  e.  ( ( Base `  s
)  ^m  ( Base `  r ) )  | 
A. x  e.  (
Base `  r ) A. y  e.  ( Base `  r ) ( f `  ( x ( +g  `  r
) y ) )  =  ( ( f `
 x ) ( +g  `  s ) ( f `  y
) ) }  i^i  { f  e.  ( (
Base `  s )  ^m  ( Base `  r
) )  |  ( A. x  e.  (
Base `  r ) A. y  e.  ( Base `  r ) ( f `  ( x ( .r `  r
) y ) )  =  ( ( f `
 x ) ( .r `  s ) ( f `  y
) )  /\  (
f `  ( 1r `  r ) )  =  ( 1r `  s
) ) } )
27 ringgrp 13878 . . . . . . . 8  |-  ( r  e.  Ring  ->  r  e. 
Grp )
28 ringgrp 13878 . . . . . . . 8  |-  ( s  e.  Ring  ->  s  e. 
Grp )
29 eqid 2207 . . . . . . . . 9  |-  ( Base `  r )  =  (
Base `  r )
30 eqid 2207 . . . . . . . . 9  |-  ( Base `  s )  =  (
Base `  s )
31 eqid 2207 . . . . . . . . 9  |-  ( +g  `  r )  =  ( +g  `  r )
32 eqid 2207 . . . . . . . . 9  |-  ( +g  `  s )  =  ( +g  `  s )
3329, 30, 31, 32isghm3 13695 . . . . . . . 8  |-  ( ( r  e.  Grp  /\  s  e.  Grp )  ->  ( f  e.  ( r  GrpHom  s )  <->  ( f : ( Base `  r
) --> ( Base `  s
)  /\  A. x  e.  ( Base `  r
) A. y  e.  ( Base `  r
) ( f `  ( x ( +g  `  r ) y ) )  =  ( ( f `  x ) ( +g  `  s
) ( f `  y ) ) ) ) )
3427, 28, 33syl2an 289 . . . . . . 7  |-  ( ( r  e.  Ring  /\  s  e.  Ring )  ->  (
f  e.  ( r 
GrpHom  s )  <->  ( f : ( Base `  r
) --> ( Base `  s
)  /\  A. x  e.  ( Base `  r
) A. y  e.  ( Base `  r
) ( f `  ( x ( +g  `  r ) y ) )  =  ( ( f `  x ) ( +g  `  s
) ( f `  y ) ) ) ) )
3534eqabdv 2336 . . . . . 6  |-  ( ( r  e.  Ring  /\  s  e.  Ring )  ->  (
r  GrpHom  s )  =  { f  |  ( f : ( Base `  r ) --> ( Base `  s )  /\  A. x  e.  ( Base `  r ) A. y  e.  ( Base `  r
) ( f `  ( x ( +g  `  r ) y ) )  =  ( ( f `  x ) ( +g  `  s
) ( f `  y ) ) ) } )
36 df-rab 2495 . . . . . . 7  |-  { f  e.  ( ( Base `  s )  ^m  ( Base `  r ) )  |  A. x  e.  ( Base `  r
) A. y  e.  ( Base `  r
) ( f `  ( x ( +g  `  r ) y ) )  =  ( ( f `  x ) ( +g  `  s
) ( f `  y ) ) }  =  { f  |  ( f  e.  ( ( Base `  s
)  ^m  ( Base `  r ) )  /\  A. x  e.  ( Base `  r ) A. y  e.  ( Base `  r
) ( f `  ( x ( +g  `  r ) y ) )  =  ( ( f `  x ) ( +g  `  s
) ( f `  y ) ) ) }
3716, 12elmap 6787 . . . . . . . . 9  |-  ( f  e.  ( ( Base `  s )  ^m  ( Base `  r ) )  <-> 
f : ( Base `  r ) --> ( Base `  s ) )
3837anbi1i 458 . . . . . . . 8  |-  ( ( f  e.  ( (
Base `  s )  ^m  ( Base `  r
) )  /\  A. x  e.  ( Base `  r ) A. y  e.  ( Base `  r
) ( f `  ( x ( +g  `  r ) y ) )  =  ( ( f `  x ) ( +g  `  s
) ( f `  y ) ) )  <-> 
( f : (
Base `  r ) --> ( Base `  s )  /\  A. x  e.  (
Base `  r ) A. y  e.  ( Base `  r ) ( f `  ( x ( +g  `  r
) y ) )  =  ( ( f `
 x ) ( +g  `  s ) ( f `  y
) ) ) )
3938abbii 2323 . . . . . . 7  |-  { f  |  ( f  e.  ( ( Base `  s
)  ^m  ( Base `  r ) )  /\  A. x  e.  ( Base `  r ) A. y  e.  ( Base `  r
) ( f `  ( x ( +g  `  r ) y ) )  =  ( ( f `  x ) ( +g  `  s
) ( f `  y ) ) ) }  =  { f  |  ( f : ( Base `  r
) --> ( Base `  s
)  /\  A. x  e.  ( Base `  r
) A. y  e.  ( Base `  r
) ( f `  ( x ( +g  `  r ) y ) )  =  ( ( f `  x ) ( +g  `  s
) ( f `  y ) ) ) }
4036, 39eqtri 2228 . . . . . 6  |-  { f  e.  ( ( Base `  s )  ^m  ( Base `  r ) )  |  A. x  e.  ( Base `  r
) A. y  e.  ( Base `  r
) ( f `  ( x ( +g  `  r ) y ) )  =  ( ( f `  x ) ( +g  `  s
) ( f `  y ) ) }  =  { f  |  ( f : (
Base `  r ) --> ( Base `  s )  /\  A. x  e.  (
Base `  r ) A. y  e.  ( Base `  r ) ( f `  ( x ( +g  `  r
) y ) )  =  ( ( f `
 x ) ( +g  `  s ) ( f `  y
) ) ) }
4135, 40eqtr4di 2258 . . . . 5  |-  ( ( r  e.  Ring  /\  s  e.  Ring )  ->  (
r  GrpHom  s )  =  { f  e.  ( ( Base `  s
)  ^m  ( Base `  r ) )  | 
A. x  e.  (
Base `  r ) A. y  e.  ( Base `  r ) ( f `  ( x ( +g  `  r
) y ) )  =  ( ( f `
 x ) ( +g  `  s ) ( f `  y
) ) } )
42 eqid 2207 . . . . . . . . 9  |-  (mulGrp `  r )  =  (mulGrp `  r )
4342ringmgp 13879 . . . . . . . 8  |-  ( r  e.  Ring  ->  (mulGrp `  r )  e.  Mnd )
44 eqid 2207 . . . . . . . . 9  |-  (mulGrp `  s )  =  (mulGrp `  s )
4544ringmgp 13879 . . . . . . . 8  |-  ( s  e.  Ring  ->  (mulGrp `  s )  e.  Mnd )
4642, 29mgpbasg 13803 . . . . . . . . . . 11  |-  ( r  e.  _V  ->  ( Base `  r )  =  ( Base `  (mulGrp `  r ) ) )
4746elv 2780 . . . . . . . . . 10  |-  ( Base `  r )  =  (
Base `  (mulGrp `  r
) )
4844, 30mgpbasg 13803 . . . . . . . . . . 11  |-  ( s  e.  _V  ->  ( Base `  s )  =  ( Base `  (mulGrp `  s ) ) )
4948elv 2780 . . . . . . . . . 10  |-  ( Base `  s )  =  (
Base `  (mulGrp `  s
) )
50 eqid 2207 . . . . . . . . . . . 12  |-  ( .r
`  r )  =  ( .r `  r
)
5142, 50mgpplusgg 13801 . . . . . . . . . . 11  |-  ( r  e.  _V  ->  ( .r `  r )  =  ( +g  `  (mulGrp `  r ) ) )
5251elv 2780 . . . . . . . . . 10  |-  ( .r
`  r )  =  ( +g  `  (mulGrp `  r ) )
53 eqid 2207 . . . . . . . . . . . 12  |-  ( .r
`  s )  =  ( .r `  s
)
5444, 53mgpplusgg 13801 . . . . . . . . . . 11  |-  ( s  e.  _V  ->  ( .r `  s )  =  ( +g  `  (mulGrp `  s ) ) )
5554elv 2780 . . . . . . . . . 10  |-  ( .r
`  s )  =  ( +g  `  (mulGrp `  s ) )
56 eqid 2207 . . . . . . . . . . . 12  |-  ( 1r
`  r )  =  ( 1r `  r
)
5742, 56ringidvalg 13838 . . . . . . . . . . 11  |-  ( r  e.  _V  ->  ( 1r `  r )  =  ( 0g `  (mulGrp `  r ) ) )
5857elv 2780 . . . . . . . . . 10  |-  ( 1r
`  r )  =  ( 0g `  (mulGrp `  r ) )
59 eqid 2207 . . . . . . . . . . . 12  |-  ( 1r
`  s )  =  ( 1r `  s
)
6044, 59ringidvalg 13838 . . . . . . . . . . 11  |-  ( s  e.  _V  ->  ( 1r `  s )  =  ( 0g `  (mulGrp `  s ) ) )
6160elv 2780 . . . . . . . . . 10  |-  ( 1r
`  s )  =  ( 0g `  (mulGrp `  s ) )
6247, 49, 52, 55, 58, 61ismhm 13408 . . . . . . . . 9  |-  ( f  e.  ( (mulGrp `  r ) MndHom  (mulGrp `  s
) )  <->  ( (
(mulGrp `  r )  e.  Mnd  /\  (mulGrp `  s )  e.  Mnd )  /\  ( f : ( Base `  r
) --> ( Base `  s
)  /\  A. x  e.  ( Base `  r
) A. y  e.  ( Base `  r
) ( f `  ( x ( .r
`  r ) y ) )  =  ( ( f `  x
) ( .r `  s ) ( f `
 y ) )  /\  ( f `  ( 1r `  r ) )  =  ( 1r
`  s ) ) ) )
6362baib 921 . . . . . . . 8  |-  ( ( (mulGrp `  r )  e.  Mnd  /\  (mulGrp `  s )  e.  Mnd )  ->  ( f  e.  ( (mulGrp `  r
) MndHom  (mulGrp `  s )
)  <->  ( f : ( Base `  r
) --> ( Base `  s
)  /\  A. x  e.  ( Base `  r
) A. y  e.  ( Base `  r
) ( f `  ( x ( .r
`  r ) y ) )  =  ( ( f `  x
) ( .r `  s ) ( f `
 y ) )  /\  ( f `  ( 1r `  r ) )  =  ( 1r
`  s ) ) ) )
6443, 45, 63syl2an 289 . . . . . . 7  |-  ( ( r  e.  Ring  /\  s  e.  Ring )  ->  (
f  e.  ( (mulGrp `  r ) MndHom  (mulGrp `  s ) )  <->  ( f : ( Base `  r
) --> ( Base `  s
)  /\  A. x  e.  ( Base `  r
) A. y  e.  ( Base `  r
) ( f `  ( x ( .r
`  r ) y ) )  =  ( ( f `  x
) ( .r `  s ) ( f `
 y ) )  /\  ( f `  ( 1r `  r ) )  =  ( 1r
`  s ) ) ) )
6564eqabdv 2336 . . . . . 6  |-  ( ( r  e.  Ring  /\  s  e.  Ring )  ->  (
(mulGrp `  r ) MndHom  (mulGrp `  s ) )  =  { f  |  ( f : ( Base `  r ) --> ( Base `  s )  /\  A. x  e.  ( Base `  r ) A. y  e.  ( Base `  r
) ( f `  ( x ( .r
`  r ) y ) )  =  ( ( f `  x
) ( .r `  s ) ( f `
 y ) )  /\  ( f `  ( 1r `  r ) )  =  ( 1r
`  s ) ) } )
66 df-rab 2495 . . . . . . 7  |-  { f  e.  ( ( Base `  s )  ^m  ( Base `  r ) )  |  ( A. x  e.  ( Base `  r
) A. y  e.  ( Base `  r
) ( f `  ( x ( .r
`  r ) y ) )  =  ( ( f `  x
) ( .r `  s ) ( f `
 y ) )  /\  ( f `  ( 1r `  r ) )  =  ( 1r
`  s ) ) }  =  { f  |  ( f  e.  ( ( Base `  s
)  ^m  ( Base `  r ) )  /\  ( A. x  e.  (
Base `  r ) A. y  e.  ( Base `  r ) ( f `  ( x ( .r `  r
) y ) )  =  ( ( f `
 x ) ( .r `  s ) ( f `  y
) )  /\  (
f `  ( 1r `  r ) )  =  ( 1r `  s
) ) ) }
6737anbi1i 458 . . . . . . . . 9  |-  ( ( f  e.  ( (
Base `  s )  ^m  ( Base `  r
) )  /\  ( A. x  e.  ( Base `  r ) A. y  e.  ( Base `  r ) ( f `
 ( x ( .r `  r ) y ) )  =  ( ( f `  x ) ( .r
`  s ) ( f `  y ) )  /\  ( f `
 ( 1r `  r ) )  =  ( 1r `  s
) ) )  <->  ( f : ( Base `  r
) --> ( Base `  s
)  /\  ( A. x  e.  ( Base `  r ) A. y  e.  ( Base `  r
) ( f `  ( x ( .r
`  r ) y ) )  =  ( ( f `  x
) ( .r `  s ) ( f `
 y ) )  /\  ( f `  ( 1r `  r ) )  =  ( 1r
`  s ) ) ) )
68 3anass 985 . . . . . . . . 9  |-  ( ( f : ( Base `  r ) --> ( Base `  s )  /\  A. x  e.  ( Base `  r ) A. y  e.  ( Base `  r
) ( f `  ( x ( .r
`  r ) y ) )  =  ( ( f `  x
) ( .r `  s ) ( f `
 y ) )  /\  ( f `  ( 1r `  r ) )  =  ( 1r
`  s ) )  <-> 
( f : (
Base `  r ) --> ( Base `  s )  /\  ( A. x  e.  ( Base `  r
) A. y  e.  ( Base `  r
) ( f `  ( x ( .r
`  r ) y ) )  =  ( ( f `  x
) ( .r `  s ) ( f `
 y ) )  /\  ( f `  ( 1r `  r ) )  =  ( 1r
`  s ) ) ) )
6967, 68bitr4i 187 . . . . . . . 8  |-  ( ( f  e.  ( (
Base `  s )  ^m  ( Base `  r
) )  /\  ( A. x  e.  ( Base `  r ) A. y  e.  ( Base `  r ) ( f `
 ( x ( .r `  r ) y ) )  =  ( ( f `  x ) ( .r
`  s ) ( f `  y ) )  /\  ( f `
 ( 1r `  r ) )  =  ( 1r `  s
) ) )  <->  ( f : ( Base `  r
) --> ( Base `  s
)  /\  A. x  e.  ( Base `  r
) A. y  e.  ( Base `  r
) ( f `  ( x ( .r
`  r ) y ) )  =  ( ( f `  x
) ( .r `  s ) ( f `
 y ) )  /\  ( f `  ( 1r `  r ) )  =  ( 1r
`  s ) ) )
7069abbii 2323 . . . . . . 7  |-  { f  |  ( f  e.  ( ( Base `  s
)  ^m  ( Base `  r ) )  /\  ( A. x  e.  (
Base `  r ) A. y  e.  ( Base `  r ) ( f `  ( x ( .r `  r
) y ) )  =  ( ( f `
 x ) ( .r `  s ) ( f `  y
) )  /\  (
f `  ( 1r `  r ) )  =  ( 1r `  s
) ) ) }  =  { f  |  ( f : (
Base `  r ) --> ( Base `  s )  /\  A. x  e.  (
Base `  r ) A. y  e.  ( Base `  r ) ( f `  ( x ( .r `  r
) y ) )  =  ( ( f `
 x ) ( .r `  s ) ( f `  y
) )  /\  (
f `  ( 1r `  r ) )  =  ( 1r `  s
) ) }
7166, 70eqtri 2228 . . . . . 6  |-  { f  e.  ( ( Base `  s )  ^m  ( Base `  r ) )  |  ( A. x  e.  ( Base `  r
) A. y  e.  ( Base `  r
) ( f `  ( x ( .r
`  r ) y ) )  =  ( ( f `  x
) ( .r `  s ) ( f `
 y ) )  /\  ( f `  ( 1r `  r ) )  =  ( 1r
`  s ) ) }  =  { f  |  ( f : ( Base `  r
) --> ( Base `  s
)  /\  A. x  e.  ( Base `  r
) A. y  e.  ( Base `  r
) ( f `  ( x ( .r
`  r ) y ) )  =  ( ( f `  x
) ( .r `  s ) ( f `
 y ) )  /\  ( f `  ( 1r `  r ) )  =  ( 1r
`  s ) ) }
7265, 71eqtr4di 2258 . . . . 5  |-  ( ( r  e.  Ring  /\  s  e.  Ring )  ->  (
(mulGrp `  r ) MndHom  (mulGrp `  s ) )  =  { f  e.  ( ( Base `  s
)  ^m  ( Base `  r ) )  |  ( A. x  e.  ( Base `  r
) A. y  e.  ( Base `  r
) ( f `  ( x ( .r
`  r ) y ) )  =  ( ( f `  x
) ( .r `  s ) ( f `
 y ) )  /\  ( f `  ( 1r `  r ) )  =  ( 1r
`  s ) ) } )
7341, 72ineq12d 3383 . . . 4  |-  ( ( r  e.  Ring  /\  s  e.  Ring )  ->  (
( r  GrpHom  s )  i^i  ( (mulGrp `  r ) MndHom  (mulGrp `  s
) ) )  =  ( { f  e.  ( ( Base `  s
)  ^m  ( Base `  r ) )  | 
A. x  e.  (
Base `  r ) A. y  e.  ( Base `  r ) ( f `  ( x ( +g  `  r
) y ) )  =  ( ( f `
 x ) ( +g  `  s ) ( f `  y
) ) }  i^i  { f  e.  ( (
Base `  s )  ^m  ( Base `  r
) )  |  ( A. x  e.  (
Base `  r ) A. y  e.  ( Base `  r ) ( f `  ( x ( .r `  r
) y ) )  =  ( ( f `
 x ) ( .r `  s ) ( f `  y
) )  /\  (
f `  ( 1r `  r ) )  =  ( 1r `  s
) ) } ) )
7426, 73eqtr4id 2259 . . 3  |-  ( ( r  e.  Ring  /\  s  e.  Ring )  ->  [_ ( Base `  r )  / 
v ]_ [_ ( Base `  s )  /  w ]_ { f  e.  ( w  ^m  v )  |  ( ( f `
 ( 1r `  r ) )  =  ( 1r `  s
)  /\  A. x  e.  v  A. y  e.  v  ( (
f `  ( x
( +g  `  r ) y ) )  =  ( ( f `  x ) ( +g  `  s ) ( f `
 y ) )  /\  ( f `  ( x ( .r
`  r ) y ) )  =  ( ( f `  x
) ( .r `  s ) ( f `
 y ) ) ) ) }  =  ( ( r  GrpHom  s )  i^i  ( (mulGrp `  r ) MndHom  (mulGrp `  s ) ) ) )
7574mpoeq3ia 6033 . 2  |-  ( r  e.  Ring ,  s  e. 
Ring  |->  [_ ( Base `  r
)  /  v ]_ [_ ( Base `  s
)  /  w ]_ { f  e.  ( w  ^m  v )  |  ( ( f `
 ( 1r `  r ) )  =  ( 1r `  s
)  /\  A. x  e.  v  A. y  e.  v  ( (
f `  ( x
( +g  `  r ) y ) )  =  ( ( f `  x ) ( +g  `  s ) ( f `
 y ) )  /\  ( f `  ( x ( .r
`  r ) y ) )  =  ( ( f `  x
) ( .r `  s ) ( f `
 y ) ) ) ) } )  =  ( r  e. 
Ring ,  s  e.  Ring  |->  ( ( r  GrpHom  s )  i^i  ( (mulGrp `  r ) MndHom  (mulGrp `  s ) ) ) )
761, 75eqtri 2228 1  |- RingHom  =  ( r  e.  Ring ,  s  e.  Ring  |->  ( ( r  GrpHom  s )  i^i  ( (mulGrp `  r
) MndHom  (mulGrp `  s )
) ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    /\ w3a 981    = wceq 1373    e. wcel 2178   {cab 2193   A.wral 2486   {crab 2490   _Vcvv 2776   [_csb 3101    i^i cin 3173    Fn wfn 5285   -->wf 5286   ` cfv 5290  (class class class)co 5967    e. cmpo 5969    ^m cmap 6758   Basecbs 12947   +g cplusg 13024   .rcmulr 13025   0gc0g 13203   Mndcmnd 13363   MndHom cmhm 13404   Grpcgrp 13447    GrpHom cghm 13691  mulGrpcmgp 13797   1rcur 13836   Ringcrg 13873   RingHom crh 14027
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-addcom 8060  ax-addass 8062  ax-i2m1 8065  ax-0lt1 8066  ax-0id 8068  ax-rnegex 8069  ax-pre-ltirr 8072  ax-pre-ltadd 8076
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-map 6760  df-pnf 8144  df-mnf 8145  df-ltxr 8147  df-inn 9072  df-2 9130  df-3 9131  df-ndx 12950  df-slot 12951  df-base 12953  df-sets 12954  df-plusg 13037  df-mulr 13038  df-mhm 13406  df-ghm 13692  df-mgp 13798  df-ur 13837  df-ring 13875  df-rhm 14029
This theorem is referenced by:  rhmrcl1  14032  rhmrcl2  14033  isrhm  14035  rhmfn  14049  rhmval  14050
  Copyright terms: Public domain W3C validator