ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfrhm2 Unicode version

Theorem dfrhm2 13650
Description: The property of a ring homomorphism can be decomposed into separate homomorphic conditions for addition and multiplication. (Contributed by Stefan O'Rear, 7-Mar-2015.)
Assertion
Ref Expression
dfrhm2  |- RingHom  =  ( r  e.  Ring ,  s  e.  Ring  |->  ( ( r  GrpHom  s )  i^i  ( (mulGrp `  r
) MndHom  (mulGrp `  s )
) ) )
Distinct variable group:    s, r

Proof of Theorem dfrhm2
Dummy variables  v  w  f  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-rhm 13648 . 2  |- RingHom  =  ( r  e.  Ring ,  s  e.  Ring  |->  [_ ( Base `  r )  / 
v ]_ [_ ( Base `  s )  /  w ]_ { f  e.  ( w  ^m  v )  |  ( ( f `
 ( 1r `  r ) )  =  ( 1r `  s
)  /\  A. x  e.  v  A. y  e.  v  ( (
f `  ( x
( +g  `  r ) y ) )  =  ( ( f `  x ) ( +g  `  s ) ( f `
 y ) )  /\  ( f `  ( x ( .r
`  r ) y ) )  =  ( ( f `  x
) ( .r `  s ) ( f `
 y ) ) ) ) } )
2 ancom 266 . . . . . . 7  |-  ( ( ( f `  ( 1r `  r ) )  =  ( 1r `  s )  /\  A. x  e.  ( Base `  r ) A. y  e.  ( Base `  r
) ( ( f `
 ( x ( +g  `  r ) y ) )  =  ( ( f `  x ) ( +g  `  s ) ( f `
 y ) )  /\  ( f `  ( x ( .r
`  r ) y ) )  =  ( ( f `  x
) ( .r `  s ) ( f `
 y ) ) ) )  <->  ( A. x  e.  ( Base `  r ) A. y  e.  ( Base `  r
) ( ( f `
 ( x ( +g  `  r ) y ) )  =  ( ( f `  x ) ( +g  `  s ) ( f `
 y ) )  /\  ( f `  ( x ( .r
`  r ) y ) )  =  ( ( f `  x
) ( .r `  s ) ( f `
 y ) ) )  /\  ( f `
 ( 1r `  r ) )  =  ( 1r `  s
) ) )
3 r19.26-2 2623 . . . . . . . 8  |-  ( A. x  e.  ( Base `  r ) A. y  e.  ( Base `  r
) ( ( f `
 ( x ( +g  `  r ) y ) )  =  ( ( f `  x ) ( +g  `  s ) ( f `
 y ) )  /\  ( f `  ( x ( .r
`  r ) y ) )  =  ( ( f `  x
) ( .r `  s ) ( f `
 y ) ) )  <->  ( A. x  e.  ( Base `  r
) A. y  e.  ( Base `  r
) ( f `  ( x ( +g  `  r ) y ) )  =  ( ( f `  x ) ( +g  `  s
) ( f `  y ) )  /\  A. x  e.  ( Base `  r ) A. y  e.  ( Base `  r
) ( f `  ( x ( .r
`  r ) y ) )  =  ( ( f `  x
) ( .r `  s ) ( f `
 y ) ) ) )
43anbi1i 458 . . . . . . 7  |-  ( ( A. x  e.  (
Base `  r ) A. y  e.  ( Base `  r ) ( ( f `  (
x ( +g  `  r
) y ) )  =  ( ( f `
 x ) ( +g  `  s ) ( f `  y
) )  /\  (
f `  ( x
( .r `  r
) y ) )  =  ( ( f `
 x ) ( .r `  s ) ( f `  y
) ) )  /\  ( f `  ( 1r `  r ) )  =  ( 1r `  s ) )  <->  ( ( A. x  e.  ( Base `  r ) A. y  e.  ( Base `  r ) ( f `
 ( x ( +g  `  r ) y ) )  =  ( ( f `  x ) ( +g  `  s ) ( f `
 y ) )  /\  A. x  e.  ( Base `  r
) A. y  e.  ( Base `  r
) ( f `  ( x ( .r
`  r ) y ) )  =  ( ( f `  x
) ( .r `  s ) ( f `
 y ) ) )  /\  ( f `
 ( 1r `  r ) )  =  ( 1r `  s
) ) )
5 anass 401 . . . . . . 7  |-  ( ( ( A. x  e.  ( Base `  r
) A. y  e.  ( Base `  r
) ( f `  ( x ( +g  `  r ) y ) )  =  ( ( f `  x ) ( +g  `  s
) ( f `  y ) )  /\  A. x  e.  ( Base `  r ) A. y  e.  ( Base `  r
) ( f `  ( x ( .r
`  r ) y ) )  =  ( ( f `  x
) ( .r `  s ) ( f `
 y ) ) )  /\  ( f `
 ( 1r `  r ) )  =  ( 1r `  s
) )  <->  ( A. x  e.  ( Base `  r ) A. y  e.  ( Base `  r
) ( f `  ( x ( +g  `  r ) y ) )  =  ( ( f `  x ) ( +g  `  s
) ( f `  y ) )  /\  ( A. x  e.  (
Base `  r ) A. y  e.  ( Base `  r ) ( f `  ( x ( .r `  r
) y ) )  =  ( ( f `
 x ) ( .r `  s ) ( f `  y
) )  /\  (
f `  ( 1r `  r ) )  =  ( 1r `  s
) ) ) )
62, 4, 53bitri 206 . . . . . 6  |-  ( ( ( f `  ( 1r `  r ) )  =  ( 1r `  s )  /\  A. x  e.  ( Base `  r ) A. y  e.  ( Base `  r
) ( ( f `
 ( x ( +g  `  r ) y ) )  =  ( ( f `  x ) ( +g  `  s ) ( f `
 y ) )  /\  ( f `  ( x ( .r
`  r ) y ) )  =  ( ( f `  x
) ( .r `  s ) ( f `
 y ) ) ) )  <->  ( A. x  e.  ( Base `  r ) A. y  e.  ( Base `  r
) ( f `  ( x ( +g  `  r ) y ) )  =  ( ( f `  x ) ( +g  `  s
) ( f `  y ) )  /\  ( A. x  e.  (
Base `  r ) A. y  e.  ( Base `  r ) ( f `  ( x ( .r `  r
) y ) )  =  ( ( f `
 x ) ( .r `  s ) ( f `  y
) )  /\  (
f `  ( 1r `  r ) )  =  ( 1r `  s
) ) ) )
76rabbii 2746 . . . . 5  |-  { f  e.  ( ( Base `  s )  ^m  ( Base `  r ) )  |  ( ( f `
 ( 1r `  r ) )  =  ( 1r `  s
)  /\  A. x  e.  ( Base `  r
) A. y  e.  ( Base `  r
) ( ( f `
 ( x ( +g  `  r ) y ) )  =  ( ( f `  x ) ( +g  `  s ) ( f `
 y ) )  /\  ( f `  ( x ( .r
`  r ) y ) )  =  ( ( f `  x
) ( .r `  s ) ( f `
 y ) ) ) ) }  =  { f  e.  ( ( Base `  s
)  ^m  ( Base `  r ) )  |  ( A. x  e.  ( Base `  r
) A. y  e.  ( Base `  r
) ( f `  ( x ( +g  `  r ) y ) )  =  ( ( f `  x ) ( +g  `  s
) ( f `  y ) )  /\  ( A. x  e.  (
Base `  r ) A. y  e.  ( Base `  r ) ( f `  ( x ( .r `  r
) y ) )  =  ( ( f `
 x ) ( .r `  s ) ( f `  y
) )  /\  (
f `  ( 1r `  r ) )  =  ( 1r `  s
) ) ) }
8 basfn 12676 . . . . . . 7  |-  Base  Fn  _V
9 vex 2763 . . . . . . 7  |-  r  e. 
_V
10 funfvex 5571 . . . . . . . 8  |-  ( ( Fun  Base  /\  r  e.  dom  Base )  ->  ( Base `  r )  e. 
_V )
1110funfni 5354 . . . . . . 7  |-  ( (
Base  Fn  _V  /\  r  e.  _V )  ->  ( Base `  r )  e. 
_V )
128, 9, 11mp2an 426 . . . . . 6  |-  ( Base `  r )  e.  _V
13 vex 2763 . . . . . . 7  |-  s  e. 
_V
14 funfvex 5571 . . . . . . . 8  |-  ( ( Fun  Base  /\  s  e.  dom  Base )  ->  ( Base `  s )  e. 
_V )
1514funfni 5354 . . . . . . 7  |-  ( (
Base  Fn  _V  /\  s  e.  _V )  ->  ( Base `  s )  e. 
_V )
168, 13, 15mp2an 426 . . . . . 6  |-  ( Base `  s )  e.  _V
17 oveq12 5927 . . . . . . . 8  |-  ( ( w  =  ( Base `  s )  /\  v  =  ( Base `  r
) )  ->  (
w  ^m  v )  =  ( ( Base `  s )  ^m  ( Base `  r ) ) )
1817ancoms 268 . . . . . . 7  |-  ( ( v  =  ( Base `  r )  /\  w  =  ( Base `  s
) )  ->  (
w  ^m  v )  =  ( ( Base `  s )  ^m  ( Base `  r ) ) )
19 raleq 2690 . . . . . . . . . 10  |-  ( v  =  ( Base `  r
)  ->  ( A. y  e.  v  (
( f `  (
x ( +g  `  r
) y ) )  =  ( ( f `
 x ) ( +g  `  s ) ( f `  y
) )  /\  (
f `  ( x
( .r `  r
) y ) )  =  ( ( f `
 x ) ( .r `  s ) ( f `  y
) ) )  <->  A. y  e.  ( Base `  r
) ( ( f `
 ( x ( +g  `  r ) y ) )  =  ( ( f `  x ) ( +g  `  s ) ( f `
 y ) )  /\  ( f `  ( x ( .r
`  r ) y ) )  =  ( ( f `  x
) ( .r `  s ) ( f `
 y ) ) ) ) )
2019raleqbi1dv 2702 . . . . . . . . 9  |-  ( v  =  ( Base `  r
)  ->  ( A. x  e.  v  A. y  e.  v  (
( f `  (
x ( +g  `  r
) y ) )  =  ( ( f `
 x ) ( +g  `  s ) ( f `  y
) )  /\  (
f `  ( x
( .r `  r
) y ) )  =  ( ( f `
 x ) ( .r `  s ) ( f `  y
) ) )  <->  A. x  e.  ( Base `  r
) A. y  e.  ( Base `  r
) ( ( f `
 ( x ( +g  `  r ) y ) )  =  ( ( f `  x ) ( +g  `  s ) ( f `
 y ) )  /\  ( f `  ( x ( .r
`  r ) y ) )  =  ( ( f `  x
) ( .r `  s ) ( f `
 y ) ) ) ) )
2120adantr 276 . . . . . . . 8  |-  ( ( v  =  ( Base `  r )  /\  w  =  ( Base `  s
) )  ->  ( A. x  e.  v  A. y  e.  v 
( ( f `  ( x ( +g  `  r ) y ) )  =  ( ( f `  x ) ( +g  `  s
) ( f `  y ) )  /\  ( f `  (
x ( .r `  r ) y ) )  =  ( ( f `  x ) ( .r `  s
) ( f `  y ) ) )  <->  A. x  e.  ( Base `  r ) A. y  e.  ( Base `  r ) ( ( f `  ( x ( +g  `  r
) y ) )  =  ( ( f `
 x ) ( +g  `  s ) ( f `  y
) )  /\  (
f `  ( x
( .r `  r
) y ) )  =  ( ( f `
 x ) ( .r `  s ) ( f `  y
) ) ) ) )
2221anbi2d 464 . . . . . . 7  |-  ( ( v  =  ( Base `  r )  /\  w  =  ( Base `  s
) )  ->  (
( ( f `  ( 1r `  r ) )  =  ( 1r
`  s )  /\  A. x  e.  v  A. y  e.  v  (
( f `  (
x ( +g  `  r
) y ) )  =  ( ( f `
 x ) ( +g  `  s ) ( f `  y
) )  /\  (
f `  ( x
( .r `  r
) y ) )  =  ( ( f `
 x ) ( .r `  s ) ( f `  y
) ) ) )  <-> 
( ( f `  ( 1r `  r ) )  =  ( 1r
`  s )  /\  A. x  e.  ( Base `  r ) A. y  e.  ( Base `  r
) ( ( f `
 ( x ( +g  `  r ) y ) )  =  ( ( f `  x ) ( +g  `  s ) ( f `
 y ) )  /\  ( f `  ( x ( .r
`  r ) y ) )  =  ( ( f `  x
) ( .r `  s ) ( f `
 y ) ) ) ) ) )
2318, 22rabeqbidv 2755 . . . . . 6  |-  ( ( v  =  ( Base `  r )  /\  w  =  ( Base `  s
) )  ->  { f  e.  ( w  ^m  v )  |  ( ( f `  ( 1r `  r ) )  =  ( 1r `  s )  /\  A. x  e.  v  A. y  e.  v  (
( f `  (
x ( +g  `  r
) y ) )  =  ( ( f `
 x ) ( +g  `  s ) ( f `  y
) )  /\  (
f `  ( x
( .r `  r
) y ) )  =  ( ( f `
 x ) ( .r `  s ) ( f `  y
) ) ) ) }  =  { f  e.  ( ( Base `  s )  ^m  ( Base `  r ) )  |  ( ( f `
 ( 1r `  r ) )  =  ( 1r `  s
)  /\  A. x  e.  ( Base `  r
) A. y  e.  ( Base `  r
) ( ( f `
 ( x ( +g  `  r ) y ) )  =  ( ( f `  x ) ( +g  `  s ) ( f `
 y ) )  /\  ( f `  ( x ( .r
`  r ) y ) )  =  ( ( f `  x
) ( .r `  s ) ( f `
 y ) ) ) ) } )
2412, 16, 23csbie2 3130 . . . . 5  |-  [_ ( Base `  r )  / 
v ]_ [_ ( Base `  s )  /  w ]_ { f  e.  ( w  ^m  v )  |  ( ( f `
 ( 1r `  r ) )  =  ( 1r `  s
)  /\  A. x  e.  v  A. y  e.  v  ( (
f `  ( x
( +g  `  r ) y ) )  =  ( ( f `  x ) ( +g  `  s ) ( f `
 y ) )  /\  ( f `  ( x ( .r
`  r ) y ) )  =  ( ( f `  x
) ( .r `  s ) ( f `
 y ) ) ) ) }  =  { f  e.  ( ( Base `  s
)  ^m  ( Base `  r ) )  |  ( ( f `  ( 1r `  r ) )  =  ( 1r
`  s )  /\  A. x  e.  ( Base `  r ) A. y  e.  ( Base `  r
) ( ( f `
 ( x ( +g  `  r ) y ) )  =  ( ( f `  x ) ( +g  `  s ) ( f `
 y ) )  /\  ( f `  ( x ( .r
`  r ) y ) )  =  ( ( f `  x
) ( .r `  s ) ( f `
 y ) ) ) ) }
25 inrab 3431 . . . . 5  |-  ( { f  e.  ( (
Base `  s )  ^m  ( Base `  r
) )  |  A. x  e.  ( Base `  r ) A. y  e.  ( Base `  r
) ( f `  ( x ( +g  `  r ) y ) )  =  ( ( f `  x ) ( +g  `  s
) ( f `  y ) ) }  i^i  { f  e.  ( ( Base `  s
)  ^m  ( Base `  r ) )  |  ( A. x  e.  ( Base `  r
) A. y  e.  ( Base `  r
) ( f `  ( x ( .r
`  r ) y ) )  =  ( ( f `  x
) ( .r `  s ) ( f `
 y ) )  /\  ( f `  ( 1r `  r ) )  =  ( 1r
`  s ) ) } )  =  {
f  e.  ( (
Base `  s )  ^m  ( Base `  r
) )  |  ( A. x  e.  (
Base `  r ) A. y  e.  ( Base `  r ) ( f `  ( x ( +g  `  r
) y ) )  =  ( ( f `
 x ) ( +g  `  s ) ( f `  y
) )  /\  ( A. x  e.  ( Base `  r ) A. y  e.  ( Base `  r ) ( f `
 ( x ( .r `  r ) y ) )  =  ( ( f `  x ) ( .r
`  s ) ( f `  y ) )  /\  ( f `
 ( 1r `  r ) )  =  ( 1r `  s
) ) ) }
267, 24, 253eqtr4i 2224 . . . 4  |-  [_ ( Base `  r )  / 
v ]_ [_ ( Base `  s )  /  w ]_ { f  e.  ( w  ^m  v )  |  ( ( f `
 ( 1r `  r ) )  =  ( 1r `  s
)  /\  A. x  e.  v  A. y  e.  v  ( (
f `  ( x
( +g  `  r ) y ) )  =  ( ( f `  x ) ( +g  `  s ) ( f `
 y ) )  /\  ( f `  ( x ( .r
`  r ) y ) )  =  ( ( f `  x
) ( .r `  s ) ( f `
 y ) ) ) ) }  =  ( { f  e.  ( ( Base `  s
)  ^m  ( Base `  r ) )  | 
A. x  e.  (
Base `  r ) A. y  e.  ( Base `  r ) ( f `  ( x ( +g  `  r
) y ) )  =  ( ( f `
 x ) ( +g  `  s ) ( f `  y
) ) }  i^i  { f  e.  ( (
Base `  s )  ^m  ( Base `  r
) )  |  ( A. x  e.  (
Base `  r ) A. y  e.  ( Base `  r ) ( f `  ( x ( .r `  r
) y ) )  =  ( ( f `
 x ) ( .r `  s ) ( f `  y
) )  /\  (
f `  ( 1r `  r ) )  =  ( 1r `  s
) ) } )
27 ringgrp 13497 . . . . . . . 8  |-  ( r  e.  Ring  ->  r  e. 
Grp )
28 ringgrp 13497 . . . . . . . 8  |-  ( s  e.  Ring  ->  s  e. 
Grp )
29 eqid 2193 . . . . . . . . 9  |-  ( Base `  r )  =  (
Base `  r )
30 eqid 2193 . . . . . . . . 9  |-  ( Base `  s )  =  (
Base `  s )
31 eqid 2193 . . . . . . . . 9  |-  ( +g  `  r )  =  ( +g  `  r )
32 eqid 2193 . . . . . . . . 9  |-  ( +g  `  s )  =  ( +g  `  s )
3329, 30, 31, 32isghm3 13314 . . . . . . . 8  |-  ( ( r  e.  Grp  /\  s  e.  Grp )  ->  ( f  e.  ( r  GrpHom  s )  <->  ( f : ( Base `  r
) --> ( Base `  s
)  /\  A. x  e.  ( Base `  r
) A. y  e.  ( Base `  r
) ( f `  ( x ( +g  `  r ) y ) )  =  ( ( f `  x ) ( +g  `  s
) ( f `  y ) ) ) ) )
3427, 28, 33syl2an 289 . . . . . . 7  |-  ( ( r  e.  Ring  /\  s  e.  Ring )  ->  (
f  e.  ( r 
GrpHom  s )  <->  ( f : ( Base `  r
) --> ( Base `  s
)  /\  A. x  e.  ( Base `  r
) A. y  e.  ( Base `  r
) ( f `  ( x ( +g  `  r ) y ) )  =  ( ( f `  x ) ( +g  `  s
) ( f `  y ) ) ) ) )
3534eqabdv 2322 . . . . . 6  |-  ( ( r  e.  Ring  /\  s  e.  Ring )  ->  (
r  GrpHom  s )  =  { f  |  ( f : ( Base `  r ) --> ( Base `  s )  /\  A. x  e.  ( Base `  r ) A. y  e.  ( Base `  r
) ( f `  ( x ( +g  `  r ) y ) )  =  ( ( f `  x ) ( +g  `  s
) ( f `  y ) ) ) } )
36 df-rab 2481 . . . . . . 7  |-  { f  e.  ( ( Base `  s )  ^m  ( Base `  r ) )  |  A. x  e.  ( Base `  r
) A. y  e.  ( Base `  r
) ( f `  ( x ( +g  `  r ) y ) )  =  ( ( f `  x ) ( +g  `  s
) ( f `  y ) ) }  =  { f  |  ( f  e.  ( ( Base `  s
)  ^m  ( Base `  r ) )  /\  A. x  e.  ( Base `  r ) A. y  e.  ( Base `  r
) ( f `  ( x ( +g  `  r ) y ) )  =  ( ( f `  x ) ( +g  `  s
) ( f `  y ) ) ) }
3716, 12elmap 6731 . . . . . . . . 9  |-  ( f  e.  ( ( Base `  s )  ^m  ( Base `  r ) )  <-> 
f : ( Base `  r ) --> ( Base `  s ) )
3837anbi1i 458 . . . . . . . 8  |-  ( ( f  e.  ( (
Base `  s )  ^m  ( Base `  r
) )  /\  A. x  e.  ( Base `  r ) A. y  e.  ( Base `  r
) ( f `  ( x ( +g  `  r ) y ) )  =  ( ( f `  x ) ( +g  `  s
) ( f `  y ) ) )  <-> 
( f : (
Base `  r ) --> ( Base `  s )  /\  A. x  e.  (
Base `  r ) A. y  e.  ( Base `  r ) ( f `  ( x ( +g  `  r
) y ) )  =  ( ( f `
 x ) ( +g  `  s ) ( f `  y
) ) ) )
3938abbii 2309 . . . . . . 7  |-  { f  |  ( f  e.  ( ( Base `  s
)  ^m  ( Base `  r ) )  /\  A. x  e.  ( Base `  r ) A. y  e.  ( Base `  r
) ( f `  ( x ( +g  `  r ) y ) )  =  ( ( f `  x ) ( +g  `  s
) ( f `  y ) ) ) }  =  { f  |  ( f : ( Base `  r
) --> ( Base `  s
)  /\  A. x  e.  ( Base `  r
) A. y  e.  ( Base `  r
) ( f `  ( x ( +g  `  r ) y ) )  =  ( ( f `  x ) ( +g  `  s
) ( f `  y ) ) ) }
4036, 39eqtri 2214 . . . . . 6  |-  { f  e.  ( ( Base `  s )  ^m  ( Base `  r ) )  |  A. x  e.  ( Base `  r
) A. y  e.  ( Base `  r
) ( f `  ( x ( +g  `  r ) y ) )  =  ( ( f `  x ) ( +g  `  s
) ( f `  y ) ) }  =  { f  |  ( f : (
Base `  r ) --> ( Base `  s )  /\  A. x  e.  (
Base `  r ) A. y  e.  ( Base `  r ) ( f `  ( x ( +g  `  r
) y ) )  =  ( ( f `
 x ) ( +g  `  s ) ( f `  y
) ) ) }
4135, 40eqtr4di 2244 . . . . 5  |-  ( ( r  e.  Ring  /\  s  e.  Ring )  ->  (
r  GrpHom  s )  =  { f  e.  ( ( Base `  s
)  ^m  ( Base `  r ) )  | 
A. x  e.  (
Base `  r ) A. y  e.  ( Base `  r ) ( f `  ( x ( +g  `  r
) y ) )  =  ( ( f `
 x ) ( +g  `  s ) ( f `  y
) ) } )
42 eqid 2193 . . . . . . . . 9  |-  (mulGrp `  r )  =  (mulGrp `  r )
4342ringmgp 13498 . . . . . . . 8  |-  ( r  e.  Ring  ->  (mulGrp `  r )  e.  Mnd )
44 eqid 2193 . . . . . . . . 9  |-  (mulGrp `  s )  =  (mulGrp `  s )
4544ringmgp 13498 . . . . . . . 8  |-  ( s  e.  Ring  ->  (mulGrp `  s )  e.  Mnd )
4642, 29mgpbasg 13422 . . . . . . . . . . 11  |-  ( r  e.  _V  ->  ( Base `  r )  =  ( Base `  (mulGrp `  r ) ) )
4746elv 2764 . . . . . . . . . 10  |-  ( Base `  r )  =  (
Base `  (mulGrp `  r
) )
4844, 30mgpbasg 13422 . . . . . . . . . . 11  |-  ( s  e.  _V  ->  ( Base `  s )  =  ( Base `  (mulGrp `  s ) ) )
4948elv 2764 . . . . . . . . . 10  |-  ( Base `  s )  =  (
Base `  (mulGrp `  s
) )
50 eqid 2193 . . . . . . . . . . . 12  |-  ( .r
`  r )  =  ( .r `  r
)
5142, 50mgpplusgg 13420 . . . . . . . . . . 11  |-  ( r  e.  _V  ->  ( .r `  r )  =  ( +g  `  (mulGrp `  r ) ) )
5251elv 2764 . . . . . . . . . 10  |-  ( .r
`  r )  =  ( +g  `  (mulGrp `  r ) )
53 eqid 2193 . . . . . . . . . . . 12  |-  ( .r
`  s )  =  ( .r `  s
)
5444, 53mgpplusgg 13420 . . . . . . . . . . 11  |-  ( s  e.  _V  ->  ( .r `  s )  =  ( +g  `  (mulGrp `  s ) ) )
5554elv 2764 . . . . . . . . . 10  |-  ( .r
`  s )  =  ( +g  `  (mulGrp `  s ) )
56 eqid 2193 . . . . . . . . . . . 12  |-  ( 1r
`  r )  =  ( 1r `  r
)
5742, 56ringidvalg 13457 . . . . . . . . . . 11  |-  ( r  e.  _V  ->  ( 1r `  r )  =  ( 0g `  (mulGrp `  r ) ) )
5857elv 2764 . . . . . . . . . 10  |-  ( 1r
`  r )  =  ( 0g `  (mulGrp `  r ) )
59 eqid 2193 . . . . . . . . . . . 12  |-  ( 1r
`  s )  =  ( 1r `  s
)
6044, 59ringidvalg 13457 . . . . . . . . . . 11  |-  ( s  e.  _V  ->  ( 1r `  s )  =  ( 0g `  (mulGrp `  s ) ) )
6160elv 2764 . . . . . . . . . 10  |-  ( 1r
`  s )  =  ( 0g `  (mulGrp `  s ) )
6247, 49, 52, 55, 58, 61ismhm 13033 . . . . . . . . 9  |-  ( f  e.  ( (mulGrp `  r ) MndHom  (mulGrp `  s
) )  <->  ( (
(mulGrp `  r )  e.  Mnd  /\  (mulGrp `  s )  e.  Mnd )  /\  ( f : ( Base `  r
) --> ( Base `  s
)  /\  A. x  e.  ( Base `  r
) A. y  e.  ( Base `  r
) ( f `  ( x ( .r
`  r ) y ) )  =  ( ( f `  x
) ( .r `  s ) ( f `
 y ) )  /\  ( f `  ( 1r `  r ) )  =  ( 1r
`  s ) ) ) )
6362baib 920 . . . . . . . 8  |-  ( ( (mulGrp `  r )  e.  Mnd  /\  (mulGrp `  s )  e.  Mnd )  ->  ( f  e.  ( (mulGrp `  r
) MndHom  (mulGrp `  s )
)  <->  ( f : ( Base `  r
) --> ( Base `  s
)  /\  A. x  e.  ( Base `  r
) A. y  e.  ( Base `  r
) ( f `  ( x ( .r
`  r ) y ) )  =  ( ( f `  x
) ( .r `  s ) ( f `
 y ) )  /\  ( f `  ( 1r `  r ) )  =  ( 1r
`  s ) ) ) )
6443, 45, 63syl2an 289 . . . . . . 7  |-  ( ( r  e.  Ring  /\  s  e.  Ring )  ->  (
f  e.  ( (mulGrp `  r ) MndHom  (mulGrp `  s ) )  <->  ( f : ( Base `  r
) --> ( Base `  s
)  /\  A. x  e.  ( Base `  r
) A. y  e.  ( Base `  r
) ( f `  ( x ( .r
`  r ) y ) )  =  ( ( f `  x
) ( .r `  s ) ( f `
 y ) )  /\  ( f `  ( 1r `  r ) )  =  ( 1r
`  s ) ) ) )
6564eqabdv 2322 . . . . . 6  |-  ( ( r  e.  Ring  /\  s  e.  Ring )  ->  (
(mulGrp `  r ) MndHom  (mulGrp `  s ) )  =  { f  |  ( f : ( Base `  r ) --> ( Base `  s )  /\  A. x  e.  ( Base `  r ) A. y  e.  ( Base `  r
) ( f `  ( x ( .r
`  r ) y ) )  =  ( ( f `  x
) ( .r `  s ) ( f `
 y ) )  /\  ( f `  ( 1r `  r ) )  =  ( 1r
`  s ) ) } )
66 df-rab 2481 . . . . . . 7  |-  { f  e.  ( ( Base `  s )  ^m  ( Base `  r ) )  |  ( A. x  e.  ( Base `  r
) A. y  e.  ( Base `  r
) ( f `  ( x ( .r
`  r ) y ) )  =  ( ( f `  x
) ( .r `  s ) ( f `
 y ) )  /\  ( f `  ( 1r `  r ) )  =  ( 1r
`  s ) ) }  =  { f  |  ( f  e.  ( ( Base `  s
)  ^m  ( Base `  r ) )  /\  ( A. x  e.  (
Base `  r ) A. y  e.  ( Base `  r ) ( f `  ( x ( .r `  r
) y ) )  =  ( ( f `
 x ) ( .r `  s ) ( f `  y
) )  /\  (
f `  ( 1r `  r ) )  =  ( 1r `  s
) ) ) }
6737anbi1i 458 . . . . . . . . 9  |-  ( ( f  e.  ( (
Base `  s )  ^m  ( Base `  r
) )  /\  ( A. x  e.  ( Base `  r ) A. y  e.  ( Base `  r ) ( f `
 ( x ( .r `  r ) y ) )  =  ( ( f `  x ) ( .r
`  s ) ( f `  y ) )  /\  ( f `
 ( 1r `  r ) )  =  ( 1r `  s
) ) )  <->  ( f : ( Base `  r
) --> ( Base `  s
)  /\  ( A. x  e.  ( Base `  r ) A. y  e.  ( Base `  r
) ( f `  ( x ( .r
`  r ) y ) )  =  ( ( f `  x
) ( .r `  s ) ( f `
 y ) )  /\  ( f `  ( 1r `  r ) )  =  ( 1r
`  s ) ) ) )
68 3anass 984 . . . . . . . . 9  |-  ( ( f : ( Base `  r ) --> ( Base `  s )  /\  A. x  e.  ( Base `  r ) A. y  e.  ( Base `  r
) ( f `  ( x ( .r
`  r ) y ) )  =  ( ( f `  x
) ( .r `  s ) ( f `
 y ) )  /\  ( f `  ( 1r `  r ) )  =  ( 1r
`  s ) )  <-> 
( f : (
Base `  r ) --> ( Base `  s )  /\  ( A. x  e.  ( Base `  r
) A. y  e.  ( Base `  r
) ( f `  ( x ( .r
`  r ) y ) )  =  ( ( f `  x
) ( .r `  s ) ( f `
 y ) )  /\  ( f `  ( 1r `  r ) )  =  ( 1r
`  s ) ) ) )
6967, 68bitr4i 187 . . . . . . . 8  |-  ( ( f  e.  ( (
Base `  s )  ^m  ( Base `  r
) )  /\  ( A. x  e.  ( Base `  r ) A. y  e.  ( Base `  r ) ( f `
 ( x ( .r `  r ) y ) )  =  ( ( f `  x ) ( .r
`  s ) ( f `  y ) )  /\  ( f `
 ( 1r `  r ) )  =  ( 1r `  s
) ) )  <->  ( f : ( Base `  r
) --> ( Base `  s
)  /\  A. x  e.  ( Base `  r
) A. y  e.  ( Base `  r
) ( f `  ( x ( .r
`  r ) y ) )  =  ( ( f `  x
) ( .r `  s ) ( f `
 y ) )  /\  ( f `  ( 1r `  r ) )  =  ( 1r
`  s ) ) )
7069abbii 2309 . . . . . . 7  |-  { f  |  ( f  e.  ( ( Base `  s
)  ^m  ( Base `  r ) )  /\  ( A. x  e.  (
Base `  r ) A. y  e.  ( Base `  r ) ( f `  ( x ( .r `  r
) y ) )  =  ( ( f `
 x ) ( .r `  s ) ( f `  y
) )  /\  (
f `  ( 1r `  r ) )  =  ( 1r `  s
) ) ) }  =  { f  |  ( f : (
Base `  r ) --> ( Base `  s )  /\  A. x  e.  (
Base `  r ) A. y  e.  ( Base `  r ) ( f `  ( x ( .r `  r
) y ) )  =  ( ( f `
 x ) ( .r `  s ) ( f `  y
) )  /\  (
f `  ( 1r `  r ) )  =  ( 1r `  s
) ) }
7166, 70eqtri 2214 . . . . . 6  |-  { f  e.  ( ( Base `  s )  ^m  ( Base `  r ) )  |  ( A. x  e.  ( Base `  r
) A. y  e.  ( Base `  r
) ( f `  ( x ( .r
`  r ) y ) )  =  ( ( f `  x
) ( .r `  s ) ( f `
 y ) )  /\  ( f `  ( 1r `  r ) )  =  ( 1r
`  s ) ) }  =  { f  |  ( f : ( Base `  r
) --> ( Base `  s
)  /\  A. x  e.  ( Base `  r
) A. y  e.  ( Base `  r
) ( f `  ( x ( .r
`  r ) y ) )  =  ( ( f `  x
) ( .r `  s ) ( f `
 y ) )  /\  ( f `  ( 1r `  r ) )  =  ( 1r
`  s ) ) }
7265, 71eqtr4di 2244 . . . . 5  |-  ( ( r  e.  Ring  /\  s  e.  Ring )  ->  (
(mulGrp `  r ) MndHom  (mulGrp `  s ) )  =  { f  e.  ( ( Base `  s
)  ^m  ( Base `  r ) )  |  ( A. x  e.  ( Base `  r
) A. y  e.  ( Base `  r
) ( f `  ( x ( .r
`  r ) y ) )  =  ( ( f `  x
) ( .r `  s ) ( f `
 y ) )  /\  ( f `  ( 1r `  r ) )  =  ( 1r
`  s ) ) } )
7341, 72ineq12d 3361 . . . 4  |-  ( ( r  e.  Ring  /\  s  e.  Ring )  ->  (
( r  GrpHom  s )  i^i  ( (mulGrp `  r ) MndHom  (mulGrp `  s
) ) )  =  ( { f  e.  ( ( Base `  s
)  ^m  ( Base `  r ) )  | 
A. x  e.  (
Base `  r ) A. y  e.  ( Base `  r ) ( f `  ( x ( +g  `  r
) y ) )  =  ( ( f `
 x ) ( +g  `  s ) ( f `  y
) ) }  i^i  { f  e.  ( (
Base `  s )  ^m  ( Base `  r
) )  |  ( A. x  e.  (
Base `  r ) A. y  e.  ( Base `  r ) ( f `  ( x ( .r `  r
) y ) )  =  ( ( f `
 x ) ( .r `  s ) ( f `  y
) )  /\  (
f `  ( 1r `  r ) )  =  ( 1r `  s
) ) } ) )
7426, 73eqtr4id 2245 . . 3  |-  ( ( r  e.  Ring  /\  s  e.  Ring )  ->  [_ ( Base `  r )  / 
v ]_ [_ ( Base `  s )  /  w ]_ { f  e.  ( w  ^m  v )  |  ( ( f `
 ( 1r `  r ) )  =  ( 1r `  s
)  /\  A. x  e.  v  A. y  e.  v  ( (
f `  ( x
( +g  `  r ) y ) )  =  ( ( f `  x ) ( +g  `  s ) ( f `
 y ) )  /\  ( f `  ( x ( .r
`  r ) y ) )  =  ( ( f `  x
) ( .r `  s ) ( f `
 y ) ) ) ) }  =  ( ( r  GrpHom  s )  i^i  ( (mulGrp `  r ) MndHom  (mulGrp `  s ) ) ) )
7574mpoeq3ia 5983 . 2  |-  ( r  e.  Ring ,  s  e. 
Ring  |->  [_ ( Base `  r
)  /  v ]_ [_ ( Base `  s
)  /  w ]_ { f  e.  ( w  ^m  v )  |  ( ( f `
 ( 1r `  r ) )  =  ( 1r `  s
)  /\  A. x  e.  v  A. y  e.  v  ( (
f `  ( x
( +g  `  r ) y ) )  =  ( ( f `  x ) ( +g  `  s ) ( f `
 y ) )  /\  ( f `  ( x ( .r
`  r ) y ) )  =  ( ( f `  x
) ( .r `  s ) ( f `
 y ) ) ) ) } )  =  ( r  e. 
Ring ,  s  e.  Ring  |->  ( ( r  GrpHom  s )  i^i  ( (mulGrp `  r ) MndHom  (mulGrp `  s ) ) ) )
761, 75eqtri 2214 1  |- RingHom  =  ( r  e.  Ring ,  s  e.  Ring  |->  ( ( r  GrpHom  s )  i^i  ( (mulGrp `  r
) MndHom  (mulGrp `  s )
) ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1364    e. wcel 2164   {cab 2179   A.wral 2472   {crab 2476   _Vcvv 2760   [_csb 3080    i^i cin 3152    Fn wfn 5249   -->wf 5250   ` cfv 5254  (class class class)co 5918    e. cmpo 5920    ^m cmap 6702   Basecbs 12618   +g cplusg 12695   .rcmulr 12696   0gc0g 12867   Mndcmnd 12997   MndHom cmhm 13029   Grpcgrp 13072    GrpHom cghm 13310  mulGrpcmgp 13416   1rcur 13455   Ringcrg 13492   RingHom crh 13646
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-addcom 7972  ax-addass 7974  ax-i2m1 7977  ax-0lt1 7978  ax-0id 7980  ax-rnegex 7981  ax-pre-ltirr 7984  ax-pre-ltadd 7988
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-map 6704  df-pnf 8056  df-mnf 8057  df-ltxr 8059  df-inn 8983  df-2 9041  df-3 9042  df-ndx 12621  df-slot 12622  df-base 12624  df-sets 12625  df-plusg 12708  df-mulr 12709  df-mhm 13031  df-ghm 13311  df-mgp 13417  df-ur 13456  df-ring 13494  df-rhm 13648
This theorem is referenced by:  rhmrcl1  13651  rhmrcl2  13652  isrhm  13654  rhmfn  13668  rhmval  13669
  Copyright terms: Public domain W3C validator