| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqifdc | Unicode version | ||
| Description: Expansion of an equality with a conditional operator. (Contributed by Jim Kingdon, 28-Jul-2022.) |
| Ref | Expression |
|---|---|
| eqifdc |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exmiddc 841 |
. . 3
| |
| 2 | simpr 110 |
. . . . . 6
| |
| 3 | simpl 109 |
. . . . . . 7
| |
| 4 | 2 | iftrued 3609 |
. . . . . . 7
|
| 5 | 3, 4 | eqtrd 2262 |
. . . . . 6
|
| 6 | 2, 5 | jca 306 |
. . . . 5
|
| 7 | 6 | ex 115 |
. . . 4
|
| 8 | simpr 110 |
. . . . . 6
| |
| 9 | simpl 109 |
. . . . . . 7
| |
| 10 | 8 | iffalsed 3612 |
. . . . . . 7
|
| 11 | 9, 10 | eqtrd 2262 |
. . . . . 6
|
| 12 | 8, 11 | jca 306 |
. . . . 5
|
| 13 | 12 | ex 115 |
. . . 4
|
| 14 | 7, 13 | orim12d 791 |
. . 3
|
| 15 | 1, 14 | syl5com 29 |
. 2
|
| 16 | simpr 110 |
. . . 4
| |
| 17 | simpl 109 |
. . . . 5
| |
| 18 | 17 | iftrued 3609 |
. . . 4
|
| 19 | 16, 18 | eqtr4d 2265 |
. . 3
|
| 20 | simpr 110 |
. . . 4
| |
| 21 | simpl 109 |
. . . . 5
| |
| 22 | 21 | iffalsed 3612 |
. . . 4
|
| 23 | 20, 22 | eqtr4d 2265 |
. . 3
|
| 24 | 19, 23 | jaoi 721 |
. 2
|
| 25 | 15, 24 | impbid1 142 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-11 1552 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-if 3603 |
| This theorem is referenced by: ifnebibdc 3648 fodjum 7313 nninfwlporlemd 7339 xrmaxiflemcom 11760 gsumfzval 13424 subctctexmid 16366 |
| Copyright terms: Public domain | W3C validator |