ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqifdc Unicode version

Theorem eqifdc 3639
Description: Expansion of an equality with a conditional operator. (Contributed by Jim Kingdon, 28-Jul-2022.)
Assertion
Ref Expression
eqifdc  |-  (DECID  ph  ->  ( A  =  if (
ph ,  B ,  C )  <->  ( ( ph  /\  A  =  B )  \/  ( -. 
ph  /\  A  =  C ) ) ) )

Proof of Theorem eqifdc
StepHypRef Expression
1 exmiddc 841 . . 3  |-  (DECID  ph  ->  (
ph  \/  -.  ph )
)
2 simpr 110 . . . . . 6  |-  ( ( A  =  if (
ph ,  B ,  C )  /\  ph )  ->  ph )
3 simpl 109 . . . . . . 7  |-  ( ( A  =  if (
ph ,  B ,  C )  /\  ph )  ->  A  =  if ( ph ,  B ,  C ) )
42iftrued 3609 . . . . . . 7  |-  ( ( A  =  if (
ph ,  B ,  C )  /\  ph )  ->  if ( ph ,  B ,  C )  =  B )
53, 4eqtrd 2262 . . . . . 6  |-  ( ( A  =  if (
ph ,  B ,  C )  /\  ph )  ->  A  =  B )
62, 5jca 306 . . . . 5  |-  ( ( A  =  if (
ph ,  B ,  C )  /\  ph )  ->  ( ph  /\  A  =  B )
)
76ex 115 . . . 4  |-  ( A  =  if ( ph ,  B ,  C )  ->  ( ph  ->  (
ph  /\  A  =  B ) ) )
8 simpr 110 . . . . . 6  |-  ( ( A  =  if (
ph ,  B ,  C )  /\  -.  ph )  ->  -.  ph )
9 simpl 109 . . . . . . 7  |-  ( ( A  =  if (
ph ,  B ,  C )  /\  -.  ph )  ->  A  =  if ( ph ,  B ,  C ) )
108iffalsed 3612 . . . . . . 7  |-  ( ( A  =  if (
ph ,  B ,  C )  /\  -.  ph )  ->  if ( ph ,  B ,  C )  =  C )
119, 10eqtrd 2262 . . . . . 6  |-  ( ( A  =  if (
ph ,  B ,  C )  /\  -.  ph )  ->  A  =  C )
128, 11jca 306 . . . . 5  |-  ( ( A  =  if (
ph ,  B ,  C )  /\  -.  ph )  ->  ( -.  ph 
/\  A  =  C ) )
1312ex 115 . . . 4  |-  ( A  =  if ( ph ,  B ,  C )  ->  ( -.  ph  ->  ( -.  ph  /\  A  =  C )
) )
147, 13orim12d 791 . . 3  |-  ( A  =  if ( ph ,  B ,  C )  ->  ( ( ph  \/  -.  ph )  -> 
( ( ph  /\  A  =  B )  \/  ( -.  ph  /\  A  =  C )
) ) )
151, 14syl5com 29 . 2  |-  (DECID  ph  ->  ( A  =  if (
ph ,  B ,  C )  ->  (
( ph  /\  A  =  B )  \/  ( -.  ph  /\  A  =  C ) ) ) )
16 simpr 110 . . . 4  |-  ( (
ph  /\  A  =  B )  ->  A  =  B )
17 simpl 109 . . . . 5  |-  ( (
ph  /\  A  =  B )  ->  ph )
1817iftrued 3609 . . . 4  |-  ( (
ph  /\  A  =  B )  ->  if ( ph ,  B ,  C )  =  B )
1916, 18eqtr4d 2265 . . 3  |-  ( (
ph  /\  A  =  B )  ->  A  =  if ( ph ,  B ,  C )
)
20 simpr 110 . . . 4  |-  ( ( -.  ph  /\  A  =  C )  ->  A  =  C )
21 simpl 109 . . . . 5  |-  ( ( -.  ph  /\  A  =  C )  ->  -.  ph )
2221iffalsed 3612 . . . 4  |-  ( ( -.  ph  /\  A  =  C )  ->  if ( ph ,  B ,  C )  =  C )
2320, 22eqtr4d 2265 . . 3  |-  ( ( -.  ph  /\  A  =  C )  ->  A  =  if ( ph ,  B ,  C )
)
2419, 23jaoi 721 . 2  |-  ( ( ( ph  /\  A  =  B )  \/  ( -.  ph  /\  A  =  C ) )  ->  A  =  if ( ph ,  B ,  C ) )
2515, 24impbid1 142 1  |-  (DECID  ph  ->  ( A  =  if (
ph ,  B ,  C )  <->  ( ( ph  /\  A  =  B )  \/  ( -. 
ph  /\  A  =  C ) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 713  DECID wdc 839    = wceq 1395   ifcif 3602
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-11 1552  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-dc 840  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-if 3603
This theorem is referenced by:  ifnebibdc  3648  fodjum  7313  nninfwlporlemd  7339  xrmaxiflemcom  11760  gsumfzval  13424  subctctexmid  16366
  Copyright terms: Public domain W3C validator