Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eqifdc | Unicode version |
Description: Expansion of an equality with a conditional operator. (Contributed by Jim Kingdon, 28-Jul-2022.) |
Ref | Expression |
---|---|
eqifdc | DECID |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exmiddc 826 | . . 3 DECID | |
2 | simpr 109 | . . . . . 6 | |
3 | simpl 108 | . . . . . . 7 | |
4 | 2 | iftrued 3527 | . . . . . . 7 |
5 | 3, 4 | eqtrd 2198 | . . . . . 6 |
6 | 2, 5 | jca 304 | . . . . 5 |
7 | 6 | ex 114 | . . . 4 |
8 | simpr 109 | . . . . . 6 | |
9 | simpl 108 | . . . . . . 7 | |
10 | 8 | iffalsed 3530 | . . . . . . 7 |
11 | 9, 10 | eqtrd 2198 | . . . . . 6 |
12 | 8, 11 | jca 304 | . . . . 5 |
13 | 12 | ex 114 | . . . 4 |
14 | 7, 13 | orim12d 776 | . . 3 |
15 | 1, 14 | syl5com 29 | . 2 DECID |
16 | simpr 109 | . . . 4 | |
17 | simpl 108 | . . . . 5 | |
18 | 17 | iftrued 3527 | . . . 4 |
19 | 16, 18 | eqtr4d 2201 | . . 3 |
20 | simpr 109 | . . . 4 | |
21 | simpl 108 | . . . . 5 | |
22 | 21 | iffalsed 3530 | . . . 4 |
23 | 20, 22 | eqtr4d 2201 | . . 3 |
24 | 19, 23 | jaoi 706 | . 2 |
25 | 15, 24 | impbid1 141 | 1 DECID |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 wo 698 DECID wdc 824 wceq 1343 cif 3520 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-11 1494 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-if 3521 |
This theorem is referenced by: fodjum 7110 xrmaxiflemcom 11190 subctctexmid 13881 |
Copyright terms: Public domain | W3C validator |