| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqifdc | Unicode version | ||
| Description: Expansion of an equality with a conditional operator. (Contributed by Jim Kingdon, 28-Jul-2022.) |
| Ref | Expression |
|---|---|
| eqifdc |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exmiddc 838 |
. . 3
| |
| 2 | simpr 110 |
. . . . . 6
| |
| 3 | simpl 109 |
. . . . . . 7
| |
| 4 | 2 | iftrued 3586 |
. . . . . . 7
|
| 5 | 3, 4 | eqtrd 2240 |
. . . . . 6
|
| 6 | 2, 5 | jca 306 |
. . . . 5
|
| 7 | 6 | ex 115 |
. . . 4
|
| 8 | simpr 110 |
. . . . . 6
| |
| 9 | simpl 109 |
. . . . . . 7
| |
| 10 | 8 | iffalsed 3589 |
. . . . . . 7
|
| 11 | 9, 10 | eqtrd 2240 |
. . . . . 6
|
| 12 | 8, 11 | jca 306 |
. . . . 5
|
| 13 | 12 | ex 115 |
. . . 4
|
| 14 | 7, 13 | orim12d 788 |
. . 3
|
| 15 | 1, 14 | syl5com 29 |
. 2
|
| 16 | simpr 110 |
. . . 4
| |
| 17 | simpl 109 |
. . . . 5
| |
| 18 | 17 | iftrued 3586 |
. . . 4
|
| 19 | 16, 18 | eqtr4d 2243 |
. . 3
|
| 20 | simpr 110 |
. . . 4
| |
| 21 | simpl 109 |
. . . . 5
| |
| 22 | 21 | iffalsed 3589 |
. . . 4
|
| 23 | 20, 22 | eqtr4d 2243 |
. . 3
|
| 24 | 19, 23 | jaoi 718 |
. 2
|
| 25 | 15, 24 | impbid1 142 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-11 1530 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-if 3580 |
| This theorem is referenced by: ifnebibdc 3625 fodjum 7274 nninfwlporlemd 7300 xrmaxiflemcom 11675 gsumfzval 13338 subctctexmid 16139 |
| Copyright terms: Public domain | W3C validator |