| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > eqifdc | Unicode version | ||
| Description: Expansion of an equality with a conditional operator. (Contributed by Jim Kingdon, 28-Jul-2022.) | 
| Ref | Expression | 
|---|---|
| eqifdc | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | exmiddc 837 | 
. . 3
 | |
| 2 | simpr 110 | 
. . . . . 6
 | |
| 3 | simpl 109 | 
. . . . . . 7
 | |
| 4 | 2 | iftrued 3568 | 
. . . . . . 7
 | 
| 5 | 3, 4 | eqtrd 2229 | 
. . . . . 6
 | 
| 6 | 2, 5 | jca 306 | 
. . . . 5
 | 
| 7 | 6 | ex 115 | 
. . . 4
 | 
| 8 | simpr 110 | 
. . . . . 6
 | |
| 9 | simpl 109 | 
. . . . . . 7
 | |
| 10 | 8 | iffalsed 3571 | 
. . . . . . 7
 | 
| 11 | 9, 10 | eqtrd 2229 | 
. . . . . 6
 | 
| 12 | 8, 11 | jca 306 | 
. . . . 5
 | 
| 13 | 12 | ex 115 | 
. . . 4
 | 
| 14 | 7, 13 | orim12d 787 | 
. . 3
 | 
| 15 | 1, 14 | syl5com 29 | 
. 2
 | 
| 16 | simpr 110 | 
. . . 4
 | |
| 17 | simpl 109 | 
. . . . 5
 | |
| 18 | 17 | iftrued 3568 | 
. . . 4
 | 
| 19 | 16, 18 | eqtr4d 2232 | 
. . 3
 | 
| 20 | simpr 110 | 
. . . 4
 | |
| 21 | simpl 109 | 
. . . . 5
 | |
| 22 | 21 | iffalsed 3571 | 
. . . 4
 | 
| 23 | 20, 22 | eqtr4d 2232 | 
. . 3
 | 
| 24 | 19, 23 | jaoi 717 | 
. 2
 | 
| 25 | 15, 24 | impbid1 142 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:    | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-dc 836 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-if 3562 | 
| This theorem is referenced by: ifnebibdc 3604 fodjum 7212 nninfwlporlemd 7238 xrmaxiflemcom 11414 gsumfzval 13034 subctctexmid 15645 | 
| Copyright terms: Public domain | W3C validator |