ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqifdc Unicode version

Theorem eqifdc 3616
Description: Expansion of an equality with a conditional operator. (Contributed by Jim Kingdon, 28-Jul-2022.)
Assertion
Ref Expression
eqifdc  |-  (DECID  ph  ->  ( A  =  if (
ph ,  B ,  C )  <->  ( ( ph  /\  A  =  B )  \/  ( -. 
ph  /\  A  =  C ) ) ) )

Proof of Theorem eqifdc
StepHypRef Expression
1 exmiddc 838 . . 3  |-  (DECID  ph  ->  (
ph  \/  -.  ph )
)
2 simpr 110 . . . . . 6  |-  ( ( A  =  if (
ph ,  B ,  C )  /\  ph )  ->  ph )
3 simpl 109 . . . . . . 7  |-  ( ( A  =  if (
ph ,  B ,  C )  /\  ph )  ->  A  =  if ( ph ,  B ,  C ) )
42iftrued 3586 . . . . . . 7  |-  ( ( A  =  if (
ph ,  B ,  C )  /\  ph )  ->  if ( ph ,  B ,  C )  =  B )
53, 4eqtrd 2240 . . . . . 6  |-  ( ( A  =  if (
ph ,  B ,  C )  /\  ph )  ->  A  =  B )
62, 5jca 306 . . . . 5  |-  ( ( A  =  if (
ph ,  B ,  C )  /\  ph )  ->  ( ph  /\  A  =  B )
)
76ex 115 . . . 4  |-  ( A  =  if ( ph ,  B ,  C )  ->  ( ph  ->  (
ph  /\  A  =  B ) ) )
8 simpr 110 . . . . . 6  |-  ( ( A  =  if (
ph ,  B ,  C )  /\  -.  ph )  ->  -.  ph )
9 simpl 109 . . . . . . 7  |-  ( ( A  =  if (
ph ,  B ,  C )  /\  -.  ph )  ->  A  =  if ( ph ,  B ,  C ) )
108iffalsed 3589 . . . . . . 7  |-  ( ( A  =  if (
ph ,  B ,  C )  /\  -.  ph )  ->  if ( ph ,  B ,  C )  =  C )
119, 10eqtrd 2240 . . . . . 6  |-  ( ( A  =  if (
ph ,  B ,  C )  /\  -.  ph )  ->  A  =  C )
128, 11jca 306 . . . . 5  |-  ( ( A  =  if (
ph ,  B ,  C )  /\  -.  ph )  ->  ( -.  ph 
/\  A  =  C ) )
1312ex 115 . . . 4  |-  ( A  =  if ( ph ,  B ,  C )  ->  ( -.  ph  ->  ( -.  ph  /\  A  =  C )
) )
147, 13orim12d 788 . . 3  |-  ( A  =  if ( ph ,  B ,  C )  ->  ( ( ph  \/  -.  ph )  -> 
( ( ph  /\  A  =  B )  \/  ( -.  ph  /\  A  =  C )
) ) )
151, 14syl5com 29 . 2  |-  (DECID  ph  ->  ( A  =  if (
ph ,  B ,  C )  ->  (
( ph  /\  A  =  B )  \/  ( -.  ph  /\  A  =  C ) ) ) )
16 simpr 110 . . . 4  |-  ( (
ph  /\  A  =  B )  ->  A  =  B )
17 simpl 109 . . . . 5  |-  ( (
ph  /\  A  =  B )  ->  ph )
1817iftrued 3586 . . . 4  |-  ( (
ph  /\  A  =  B )  ->  if ( ph ,  B ,  C )  =  B )
1916, 18eqtr4d 2243 . . 3  |-  ( (
ph  /\  A  =  B )  ->  A  =  if ( ph ,  B ,  C )
)
20 simpr 110 . . . 4  |-  ( ( -.  ph  /\  A  =  C )  ->  A  =  C )
21 simpl 109 . . . . 5  |-  ( ( -.  ph  /\  A  =  C )  ->  -.  ph )
2221iffalsed 3589 . . . 4  |-  ( ( -.  ph  /\  A  =  C )  ->  if ( ph ,  B ,  C )  =  C )
2320, 22eqtr4d 2243 . . 3  |-  ( ( -.  ph  /\  A  =  C )  ->  A  =  if ( ph ,  B ,  C )
)
2419, 23jaoi 718 . 2  |-  ( ( ( ph  /\  A  =  B )  \/  ( -.  ph  /\  A  =  C ) )  ->  A  =  if ( ph ,  B ,  C ) )
2515, 24impbid1 142 1  |-  (DECID  ph  ->  ( A  =  if (
ph ,  B ,  C )  <->  ( ( ph  /\  A  =  B )  \/  ( -. 
ph  /\  A  =  C ) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 710  DECID wdc 836    = wceq 1373   ifcif 3579
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-11 1530  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-dc 837  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-if 3580
This theorem is referenced by:  ifnebibdc  3625  fodjum  7274  nninfwlporlemd  7300  xrmaxiflemcom  11675  gsumfzval  13338  subctctexmid  16139
  Copyright terms: Public domain W3C validator