ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqifdc GIF version

Theorem eqifdc 3560
Description: Expansion of an equality with a conditional operator. (Contributed by Jim Kingdon, 28-Jul-2022.)
Assertion
Ref Expression
eqifdc (DECID 𝜑 → (𝐴 = if(𝜑, 𝐵, 𝐶) ↔ ((𝜑𝐴 = 𝐵) ∨ (¬ 𝜑𝐴 = 𝐶))))

Proof of Theorem eqifdc
StepHypRef Expression
1 exmiddc 831 . . 3 (DECID 𝜑 → (𝜑 ∨ ¬ 𝜑))
2 simpr 109 . . . . . 6 ((𝐴 = if(𝜑, 𝐵, 𝐶) ∧ 𝜑) → 𝜑)
3 simpl 108 . . . . . . 7 ((𝐴 = if(𝜑, 𝐵, 𝐶) ∧ 𝜑) → 𝐴 = if(𝜑, 𝐵, 𝐶))
42iftrued 3533 . . . . . . 7 ((𝐴 = if(𝜑, 𝐵, 𝐶) ∧ 𝜑) → if(𝜑, 𝐵, 𝐶) = 𝐵)
53, 4eqtrd 2203 . . . . . 6 ((𝐴 = if(𝜑, 𝐵, 𝐶) ∧ 𝜑) → 𝐴 = 𝐵)
62, 5jca 304 . . . . 5 ((𝐴 = if(𝜑, 𝐵, 𝐶) ∧ 𝜑) → (𝜑𝐴 = 𝐵))
76ex 114 . . . 4 (𝐴 = if(𝜑, 𝐵, 𝐶) → (𝜑 → (𝜑𝐴 = 𝐵)))
8 simpr 109 . . . . . 6 ((𝐴 = if(𝜑, 𝐵, 𝐶) ∧ ¬ 𝜑) → ¬ 𝜑)
9 simpl 108 . . . . . . 7 ((𝐴 = if(𝜑, 𝐵, 𝐶) ∧ ¬ 𝜑) → 𝐴 = if(𝜑, 𝐵, 𝐶))
108iffalsed 3536 . . . . . . 7 ((𝐴 = if(𝜑, 𝐵, 𝐶) ∧ ¬ 𝜑) → if(𝜑, 𝐵, 𝐶) = 𝐶)
119, 10eqtrd 2203 . . . . . 6 ((𝐴 = if(𝜑, 𝐵, 𝐶) ∧ ¬ 𝜑) → 𝐴 = 𝐶)
128, 11jca 304 . . . . 5 ((𝐴 = if(𝜑, 𝐵, 𝐶) ∧ ¬ 𝜑) → (¬ 𝜑𝐴 = 𝐶))
1312ex 114 . . . 4 (𝐴 = if(𝜑, 𝐵, 𝐶) → (¬ 𝜑 → (¬ 𝜑𝐴 = 𝐶)))
147, 13orim12d 781 . . 3 (𝐴 = if(𝜑, 𝐵, 𝐶) → ((𝜑 ∨ ¬ 𝜑) → ((𝜑𝐴 = 𝐵) ∨ (¬ 𝜑𝐴 = 𝐶))))
151, 14syl5com 29 . 2 (DECID 𝜑 → (𝐴 = if(𝜑, 𝐵, 𝐶) → ((𝜑𝐴 = 𝐵) ∨ (¬ 𝜑𝐴 = 𝐶))))
16 simpr 109 . . . 4 ((𝜑𝐴 = 𝐵) → 𝐴 = 𝐵)
17 simpl 108 . . . . 5 ((𝜑𝐴 = 𝐵) → 𝜑)
1817iftrued 3533 . . . 4 ((𝜑𝐴 = 𝐵) → if(𝜑, 𝐵, 𝐶) = 𝐵)
1916, 18eqtr4d 2206 . . 3 ((𝜑𝐴 = 𝐵) → 𝐴 = if(𝜑, 𝐵, 𝐶))
20 simpr 109 . . . 4 ((¬ 𝜑𝐴 = 𝐶) → 𝐴 = 𝐶)
21 simpl 108 . . . . 5 ((¬ 𝜑𝐴 = 𝐶) → ¬ 𝜑)
2221iffalsed 3536 . . . 4 ((¬ 𝜑𝐴 = 𝐶) → if(𝜑, 𝐵, 𝐶) = 𝐶)
2320, 22eqtr4d 2206 . . 3 ((¬ 𝜑𝐴 = 𝐶) → 𝐴 = if(𝜑, 𝐵, 𝐶))
2419, 23jaoi 711 . 2 (((𝜑𝐴 = 𝐵) ∨ (¬ 𝜑𝐴 = 𝐶)) → 𝐴 = if(𝜑, 𝐵, 𝐶))
2515, 24impbid1 141 1 (DECID 𝜑 → (𝐴 = if(𝜑, 𝐵, 𝐶) ↔ ((𝜑𝐴 = 𝐵) ∨ (¬ 𝜑𝐴 = 𝐶))))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  wo 703  DECID wdc 829   = wceq 1348  ifcif 3526
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-11 1499  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-dc 830  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-if 3527
This theorem is referenced by:  fodjum  7122  nninfwlporlemd  7148  xrmaxiflemcom  11212  subctctexmid  14034
  Copyright terms: Public domain W3C validator