ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ifiddc Unicode version

Theorem ifiddc 3595
Description: Identical true and false arguments in the conditional operator. (Contributed by NM, 18-Apr-2005.)
Assertion
Ref Expression
ifiddc  |-  (DECID  ph  ->  if ( ph ,  A ,  A )  =  A )

Proof of Theorem ifiddc
StepHypRef Expression
1 exmiddc 837 . 2  |-  (DECID  ph  ->  (
ph  \/  -.  ph )
)
2 iftrue 3566 . . 3  |-  ( ph  ->  if ( ph ,  A ,  A )  =  A )
3 iffalse 3569 . . 3  |-  ( -. 
ph  ->  if ( ph ,  A ,  A )  =  A )
42, 3jaoi 717 . 2  |-  ( (
ph  \/  -.  ph )  ->  if ( ph ,  A ,  A )  =  A )
51, 4syl 14 1  |-  (DECID  ph  ->  if ( ph ,  A ,  A )  =  A )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 709  DECID wdc 835    = wceq 1364   ifcif 3561
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-11 1520  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-dc 836  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-if 3562
This theorem is referenced by:  xaddpnf1  9921  xaddmnf1  9923  isumz  11554  prod1dc  11751  1arithlem4  12535  xpscf  12990  lgsval2lem  15251  lgsdilem2  15277
  Copyright terms: Public domain W3C validator