ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ifiddc Unicode version

Theorem ifiddc 3611
Description: Identical true and false arguments in the conditional operator. (Contributed by NM, 18-Apr-2005.)
Assertion
Ref Expression
ifiddc  |-  (DECID  ph  ->  if ( ph ,  A ,  A )  =  A )

Proof of Theorem ifiddc
StepHypRef Expression
1 exmiddc 838 . 2  |-  (DECID  ph  ->  (
ph  \/  -.  ph )
)
2 iftrue 3580 . . 3  |-  ( ph  ->  if ( ph ,  A ,  A )  =  A )
3 iffalse 3583 . . 3  |-  ( -. 
ph  ->  if ( ph ,  A ,  A )  =  A )
42, 3jaoi 718 . 2  |-  ( (
ph  \/  -.  ph )  ->  if ( ph ,  A ,  A )  =  A )
51, 4syl 14 1  |-  (DECID  ph  ->  if ( ph ,  A ,  A )  =  A )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 710  DECID wdc 836    = wceq 1373   ifcif 3575
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-11 1530  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-dc 837  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-if 3576
This theorem is referenced by:  xaddpnf1  9988  xaddmnf1  9990  isumz  11775  prod1dc  11972  1arithlem4  12764  xpscf  13254  lgsval2lem  15562  lgsdilem2  15588
  Copyright terms: Public domain W3C validator