ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ifiddc Unicode version

Theorem ifiddc 3638
Description: Identical true and false arguments in the conditional operator. (Contributed by NM, 18-Apr-2005.)
Assertion
Ref Expression
ifiddc  |-  (DECID  ph  ->  if ( ph ,  A ,  A )  =  A )

Proof of Theorem ifiddc
StepHypRef Expression
1 exmiddc 841 . 2  |-  (DECID  ph  ->  (
ph  \/  -.  ph )
)
2 iftrue 3607 . . 3  |-  ( ph  ->  if ( ph ,  A ,  A )  =  A )
3 iffalse 3610 . . 3  |-  ( -. 
ph  ->  if ( ph ,  A ,  A )  =  A )
42, 3jaoi 721 . 2  |-  ( (
ph  \/  -.  ph )  ->  if ( ph ,  A ,  A )  =  A )
51, 4syl 14 1  |-  (DECID  ph  ->  if ( ph ,  A ,  A )  =  A )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 713  DECID wdc 839    = wceq 1395   ifcif 3602
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-11 1552  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-dc 840  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-if 3603
This theorem is referenced by:  xaddpnf1  10038  xaddmnf1  10040  isumz  11895  prod1dc  12092  1arithlem4  12884  xpscf  13375  lgsval2lem  15683  lgsdilem2  15709
  Copyright terms: Public domain W3C validator