ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ifiddc Unicode version

Theorem ifiddc 3591
Description: Identical true and false arguments in the conditional operator. (Contributed by NM, 18-Apr-2005.)
Assertion
Ref Expression
ifiddc  |-  (DECID  ph  ->  if ( ph ,  A ,  A )  =  A )

Proof of Theorem ifiddc
StepHypRef Expression
1 exmiddc 837 . 2  |-  (DECID  ph  ->  (
ph  \/  -.  ph )
)
2 iftrue 3562 . . 3  |-  ( ph  ->  if ( ph ,  A ,  A )  =  A )
3 iffalse 3565 . . 3  |-  ( -. 
ph  ->  if ( ph ,  A ,  A )  =  A )
42, 3jaoi 717 . 2  |-  ( (
ph  \/  -.  ph )  ->  if ( ph ,  A ,  A )  =  A )
51, 4syl 14 1  |-  (DECID  ph  ->  if ( ph ,  A ,  A )  =  A )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 709  DECID wdc 835    = wceq 1364   ifcif 3557
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-11 1517  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-dc 836  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-if 3558
This theorem is referenced by:  xaddpnf1  9912  xaddmnf1  9914  isumz  11532  prod1dc  11729  1arithlem4  12504  xpscf  12930  lgsval2lem  15126  lgsdilem2  15152
  Copyright terms: Public domain W3C validator