ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xnn0dcle Unicode version

Theorem xnn0dcle 9882
Description: Decidability of  <_ for extended nonnegative integers. (Contributed by Jim Kingdon, 13-Oct-2024.)
Assertion
Ref Expression
xnn0dcle  |-  ( ( A  e. NN0*  /\  B  e. NN0* )  -> DECID  A  <_  B )

Proof of Theorem xnn0dcle
StepHypRef Expression
1 simpr 110 . . . . 5  |-  ( ( ( ( A  e. NN0*  /\  B  e. NN0* )  /\  B  e.  NN0 )  /\  A  e.  NN0 )  ->  A  e.  NN0 )
21nn0zd 9451 . . . 4  |-  ( ( ( ( A  e. NN0*  /\  B  e. NN0* )  /\  B  e.  NN0 )  /\  A  e.  NN0 )  ->  A  e.  ZZ )
3 simplr 528 . . . . 5  |-  ( ( ( ( A  e. NN0*  /\  B  e. NN0* )  /\  B  e.  NN0 )  /\  A  e.  NN0 )  ->  B  e.  NN0 )
43nn0zd 9451 . . . 4  |-  ( ( ( ( A  e. NN0*  /\  B  e. NN0* )  /\  B  e.  NN0 )  /\  A  e.  NN0 )  ->  B  e.  ZZ )
5 zdcle 9407 . . . 4  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  -> DECID  A  <_  B )
62, 4, 5syl2anc 411 . . 3  |-  ( ( ( ( A  e. NN0*  /\  B  e. NN0* )  /\  B  e.  NN0 )  /\  A  e.  NN0 )  -> DECID  A  <_  B )
7 simpr 110 . . . . . 6  |-  ( ( ( ( A  e. NN0*  /\  B  e. NN0* )  /\  B  e.  NN0 )  /\  A  = +oo )  ->  A  = +oo )
8 simplr 528 . . . . . . . . 9  |-  ( ( ( ( A  e. NN0*  /\  B  e. NN0* )  /\  B  e.  NN0 )  /\  A  = +oo )  ->  B  e.  NN0 )
98nn0red 9308 . . . . . . . 8  |-  ( ( ( ( A  e. NN0*  /\  B  e. NN0* )  /\  B  e.  NN0 )  /\  A  = +oo )  ->  B  e.  RR )
109ltpnfd 9861 . . . . . . 7  |-  ( ( ( ( A  e. NN0*  /\  B  e. NN0* )  /\  B  e.  NN0 )  /\  A  = +oo )  ->  B  < +oo )
11 pnfxr 8084 . . . . . . . . 9  |- +oo  e.  RR*
129rexrd 8081 . . . . . . . . 9  |-  ( ( ( ( A  e. NN0*  /\  B  e. NN0* )  /\  B  e.  NN0 )  /\  A  = +oo )  ->  B  e.  RR* )
13 xrlenlt 8096 . . . . . . . . 9  |-  ( ( +oo  e.  RR*  /\  B  e.  RR* )  ->  ( +oo  <_  B  <->  -.  B  < +oo ) )
1411, 12, 13sylancr 414 . . . . . . . 8  |-  ( ( ( ( A  e. NN0*  /\  B  e. NN0* )  /\  B  e.  NN0 )  /\  A  = +oo )  ->  ( +oo  <_  B  <->  -.  B  < +oo )
)
1514biimpd 144 . . . . . . 7  |-  ( ( ( ( A  e. NN0*  /\  B  e. NN0* )  /\  B  e.  NN0 )  /\  A  = +oo )  ->  ( +oo  <_  B  ->  -.  B  < +oo ) )
1610, 15mt2d 626 . . . . . 6  |-  ( ( ( ( A  e. NN0*  /\  B  e. NN0* )  /\  B  e.  NN0 )  /\  A  = +oo )  ->  -. +oo  <_  B
)
177, 16eqnbrtrd 4052 . . . . 5  |-  ( ( ( ( A  e. NN0*  /\  B  e. NN0* )  /\  B  e.  NN0 )  /\  A  = +oo )  ->  -.  A  <_  B
)
1817olcd 735 . . . 4  |-  ( ( ( ( A  e. NN0*  /\  B  e. NN0* )  /\  B  e.  NN0 )  /\  A  = +oo )  ->  ( A  <_  B  \/  -.  A  <_  B
) )
19 df-dc 836 . . . 4  |-  (DECID  A  <_  B 
<->  ( A  <_  B  \/  -.  A  <_  B
) )
2018, 19sylibr 134 . . 3  |-  ( ( ( ( A  e. NN0*  /\  B  e. NN0* )  /\  B  e.  NN0 )  /\  A  = +oo )  -> DECID  A  <_  B )
21 elxnn0 9319 . . . . 5  |-  ( A  e. NN0* 
<->  ( A  e.  NN0  \/  A  = +oo )
)
2221biimpi 120 . . . 4  |-  ( A  e. NN0*  ->  ( A  e. 
NN0  \/  A  = +oo ) )
2322ad2antrr 488 . . 3  |-  ( ( ( A  e. NN0*  /\  B  e. NN0* )  /\  B  e.  NN0 )  ->  ( A  e.  NN0  \/  A  = +oo ) )
246, 20, 23mpjaodan 799 . 2  |-  ( ( ( A  e. NN0*  /\  B  e. NN0* )  /\  B  e.  NN0 )  -> DECID  A  <_  B )
25 xnn0xr 9322 . . . . . . 7  |-  ( A  e. NN0*  ->  A  e.  RR* )
2625ad2antrr 488 . . . . . 6  |-  ( ( ( A  e. NN0*  /\  B  e. NN0* )  /\  B  = +oo )  ->  A  e.  RR* )
27 pnfge 9869 . . . . . 6  |-  ( A  e.  RR*  ->  A  <_ +oo )
2826, 27syl 14 . . . . 5  |-  ( ( ( A  e. NN0*  /\  B  e. NN0* )  /\  B  = +oo )  ->  A  <_ +oo )
29 simpr 110 . . . . 5  |-  ( ( ( A  e. NN0*  /\  B  e. NN0* )  /\  B  = +oo )  ->  B  = +oo )
3028, 29breqtrrd 4062 . . . 4  |-  ( ( ( A  e. NN0*  /\  B  e. NN0* )  /\  B  = +oo )  ->  A  <_  B )
3130orcd 734 . . 3  |-  ( ( ( A  e. NN0*  /\  B  e. NN0* )  /\  B  = +oo )  ->  ( A  <_  B  \/  -.  A  <_  B ) )
3231, 19sylibr 134 . 2  |-  ( ( ( A  e. NN0*  /\  B  e. NN0* )  /\  B  = +oo )  -> DECID  A  <_  B )
33 elxnn0 9319 . . . 4  |-  ( B  e. NN0* 
<->  ( B  e.  NN0  \/  B  = +oo )
)
3433biimpi 120 . . 3  |-  ( B  e. NN0*  ->  ( B  e. 
NN0  \/  B  = +oo ) )
3534adantl 277 . 2  |-  ( ( A  e. NN0*  /\  B  e. NN0* )  ->  ( B  e.  NN0  \/  B  = +oo ) )
3624, 32, 35mpjaodan 799 1  |-  ( ( A  e. NN0*  /\  B  e. NN0* )  -> DECID  A  <_  B )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709  DECID wdc 835    = wceq 1364    e. wcel 2167   class class class wbr 4034   +oocpnf 8063   RR*cxr 8065    < clt 8066    <_ cle 8067   NN0cn0 9254  NN0*cxnn0 9317   ZZcz 9331
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7975  ax-resscn 7976  ax-1cn 7977  ax-1re 7978  ax-icn 7979  ax-addcl 7980  ax-addrcl 7981  ax-mulcl 7982  ax-addcom 7984  ax-addass 7986  ax-distr 7988  ax-i2m1 7989  ax-0lt1 7990  ax-0id 7992  ax-rnegex 7993  ax-cnre 7995  ax-pre-ltirr 7996  ax-pre-ltwlin 7997  ax-pre-lttrn 7998  ax-pre-ltadd 8000
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-br 4035  df-opab 4096  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-iota 5220  df-fun 5261  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-pnf 8068  df-mnf 8069  df-xr 8070  df-ltxr 8071  df-le 8072  df-sub 8204  df-neg 8205  df-inn 8996  df-n0 9255  df-xnn0 9318  df-z 9332
This theorem is referenced by:  pcgcd  12511
  Copyright terms: Public domain W3C validator