ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xnn0dcle Unicode version

Theorem xnn0dcle 9804
Description: Decidability of  <_ for extended nonnegative integers. (Contributed by Jim Kingdon, 13-Oct-2024.)
Assertion
Ref Expression
xnn0dcle  |-  ( ( A  e. NN0*  /\  B  e. NN0* )  -> DECID  A  <_  B )

Proof of Theorem xnn0dcle
StepHypRef Expression
1 simpr 110 . . . . 5  |-  ( ( ( ( A  e. NN0*  /\  B  e. NN0* )  /\  B  e.  NN0 )  /\  A  e.  NN0 )  ->  A  e.  NN0 )
21nn0zd 9375 . . . 4  |-  ( ( ( ( A  e. NN0*  /\  B  e. NN0* )  /\  B  e.  NN0 )  /\  A  e.  NN0 )  ->  A  e.  ZZ )
3 simplr 528 . . . . 5  |-  ( ( ( ( A  e. NN0*  /\  B  e. NN0* )  /\  B  e.  NN0 )  /\  A  e.  NN0 )  ->  B  e.  NN0 )
43nn0zd 9375 . . . 4  |-  ( ( ( ( A  e. NN0*  /\  B  e. NN0* )  /\  B  e.  NN0 )  /\  A  e.  NN0 )  ->  B  e.  ZZ )
5 zdcle 9331 . . . 4  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  -> DECID  A  <_  B )
62, 4, 5syl2anc 411 . . 3  |-  ( ( ( ( A  e. NN0*  /\  B  e. NN0* )  /\  B  e.  NN0 )  /\  A  e.  NN0 )  -> DECID  A  <_  B )
7 simpr 110 . . . . . 6  |-  ( ( ( ( A  e. NN0*  /\  B  e. NN0* )  /\  B  e.  NN0 )  /\  A  = +oo )  ->  A  = +oo )
8 simplr 528 . . . . . . . . 9  |-  ( ( ( ( A  e. NN0*  /\  B  e. NN0* )  /\  B  e.  NN0 )  /\  A  = +oo )  ->  B  e.  NN0 )
98nn0red 9232 . . . . . . . 8  |-  ( ( ( ( A  e. NN0*  /\  B  e. NN0* )  /\  B  e.  NN0 )  /\  A  = +oo )  ->  B  e.  RR )
109ltpnfd 9783 . . . . . . 7  |-  ( ( ( ( A  e. NN0*  /\  B  e. NN0* )  /\  B  e.  NN0 )  /\  A  = +oo )  ->  B  < +oo )
11 pnfxr 8012 . . . . . . . . 9  |- +oo  e.  RR*
129rexrd 8009 . . . . . . . . 9  |-  ( ( ( ( A  e. NN0*  /\  B  e. NN0* )  /\  B  e.  NN0 )  /\  A  = +oo )  ->  B  e.  RR* )
13 xrlenlt 8024 . . . . . . . . 9  |-  ( ( +oo  e.  RR*  /\  B  e.  RR* )  ->  ( +oo  <_  B  <->  -.  B  < +oo ) )
1411, 12, 13sylancr 414 . . . . . . . 8  |-  ( ( ( ( A  e. NN0*  /\  B  e. NN0* )  /\  B  e.  NN0 )  /\  A  = +oo )  ->  ( +oo  <_  B  <->  -.  B  < +oo )
)
1514biimpd 144 . . . . . . 7  |-  ( ( ( ( A  e. NN0*  /\  B  e. NN0* )  /\  B  e.  NN0 )  /\  A  = +oo )  ->  ( +oo  <_  B  ->  -.  B  < +oo ) )
1610, 15mt2d 625 . . . . . 6  |-  ( ( ( ( A  e. NN0*  /\  B  e. NN0* )  /\  B  e.  NN0 )  /\  A  = +oo )  ->  -. +oo  <_  B
)
177, 16eqnbrtrd 4023 . . . . 5  |-  ( ( ( ( A  e. NN0*  /\  B  e. NN0* )  /\  B  e.  NN0 )  /\  A  = +oo )  ->  -.  A  <_  B
)
1817olcd 734 . . . 4  |-  ( ( ( ( A  e. NN0*  /\  B  e. NN0* )  /\  B  e.  NN0 )  /\  A  = +oo )  ->  ( A  <_  B  \/  -.  A  <_  B
) )
19 df-dc 835 . . . 4  |-  (DECID  A  <_  B 
<->  ( A  <_  B  \/  -.  A  <_  B
) )
2018, 19sylibr 134 . . 3  |-  ( ( ( ( A  e. NN0*  /\  B  e. NN0* )  /\  B  e.  NN0 )  /\  A  = +oo )  -> DECID  A  <_  B )
21 elxnn0 9243 . . . . 5  |-  ( A  e. NN0* 
<->  ( A  e.  NN0  \/  A  = +oo )
)
2221biimpi 120 . . . 4  |-  ( A  e. NN0*  ->  ( A  e. 
NN0  \/  A  = +oo ) )
2322ad2antrr 488 . . 3  |-  ( ( ( A  e. NN0*  /\  B  e. NN0* )  /\  B  e.  NN0 )  ->  ( A  e.  NN0  \/  A  = +oo ) )
246, 20, 23mpjaodan 798 . 2  |-  ( ( ( A  e. NN0*  /\  B  e. NN0* )  /\  B  e.  NN0 )  -> DECID  A  <_  B )
25 xnn0xr 9246 . . . . . . 7  |-  ( A  e. NN0*  ->  A  e.  RR* )
2625ad2antrr 488 . . . . . 6  |-  ( ( ( A  e. NN0*  /\  B  e. NN0* )  /\  B  = +oo )  ->  A  e.  RR* )
27 pnfge 9791 . . . . . 6  |-  ( A  e.  RR*  ->  A  <_ +oo )
2826, 27syl 14 . . . . 5  |-  ( ( ( A  e. NN0*  /\  B  e. NN0* )  /\  B  = +oo )  ->  A  <_ +oo )
29 simpr 110 . . . . 5  |-  ( ( ( A  e. NN0*  /\  B  e. NN0* )  /\  B  = +oo )  ->  B  = +oo )
3028, 29breqtrrd 4033 . . . 4  |-  ( ( ( A  e. NN0*  /\  B  e. NN0* )  /\  B  = +oo )  ->  A  <_  B )
3130orcd 733 . . 3  |-  ( ( ( A  e. NN0*  /\  B  e. NN0* )  /\  B  = +oo )  ->  ( A  <_  B  \/  -.  A  <_  B ) )
3231, 19sylibr 134 . 2  |-  ( ( ( A  e. NN0*  /\  B  e. NN0* )  /\  B  = +oo )  -> DECID  A  <_  B )
33 elxnn0 9243 . . . 4  |-  ( B  e. NN0* 
<->  ( B  e.  NN0  \/  B  = +oo )
)
3433biimpi 120 . . 3  |-  ( B  e. NN0*  ->  ( B  e. 
NN0  \/  B  = +oo ) )
3534adantl 277 . 2  |-  ( ( A  e. NN0*  /\  B  e. NN0* )  ->  ( B  e.  NN0  \/  B  = +oo ) )
3624, 32, 35mpjaodan 798 1  |-  ( ( A  e. NN0*  /\  B  e. NN0* )  -> DECID  A  <_  B )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 708  DECID wdc 834    = wceq 1353    e. wcel 2148   class class class wbr 4005   +oocpnf 7991   RR*cxr 7993    < clt 7994    <_ cle 7995   NN0cn0 9178  NN0*cxnn0 9241   ZZcz 9255
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-cnex 7904  ax-resscn 7905  ax-1cn 7906  ax-1re 7907  ax-icn 7908  ax-addcl 7909  ax-addrcl 7910  ax-mulcl 7911  ax-addcom 7913  ax-addass 7915  ax-distr 7917  ax-i2m1 7918  ax-0lt1 7919  ax-0id 7921  ax-rnegex 7922  ax-cnre 7924  ax-pre-ltirr 7925  ax-pre-ltwlin 7926  ax-pre-lttrn 7927  ax-pre-ltadd 7929
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-br 4006  df-opab 4067  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-iota 5180  df-fun 5220  df-fv 5226  df-riota 5833  df-ov 5880  df-oprab 5881  df-mpo 5882  df-pnf 7996  df-mnf 7997  df-xr 7998  df-ltxr 7999  df-le 8000  df-sub 8132  df-neg 8133  df-inn 8922  df-n0 9179  df-xnn0 9242  df-z 9256
This theorem is referenced by:  pcgcd  12330
  Copyright terms: Public domain W3C validator