ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xnn0dcle Unicode version

Theorem xnn0dcle 9998
Description: Decidability of  <_ for extended nonnegative integers. (Contributed by Jim Kingdon, 13-Oct-2024.)
Assertion
Ref Expression
xnn0dcle  |-  ( ( A  e. NN0*  /\  B  e. NN0* )  -> DECID  A  <_  B )

Proof of Theorem xnn0dcle
StepHypRef Expression
1 simpr 110 . . . . 5  |-  ( ( ( ( A  e. NN0*  /\  B  e. NN0* )  /\  B  e.  NN0 )  /\  A  e.  NN0 )  ->  A  e.  NN0 )
21nn0zd 9567 . . . 4  |-  ( ( ( ( A  e. NN0*  /\  B  e. NN0* )  /\  B  e.  NN0 )  /\  A  e.  NN0 )  ->  A  e.  ZZ )
3 simplr 528 . . . . 5  |-  ( ( ( ( A  e. NN0*  /\  B  e. NN0* )  /\  B  e.  NN0 )  /\  A  e.  NN0 )  ->  B  e.  NN0 )
43nn0zd 9567 . . . 4  |-  ( ( ( ( A  e. NN0*  /\  B  e. NN0* )  /\  B  e.  NN0 )  /\  A  e.  NN0 )  ->  B  e.  ZZ )
5 zdcle 9523 . . . 4  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  -> DECID  A  <_  B )
62, 4, 5syl2anc 411 . . 3  |-  ( ( ( ( A  e. NN0*  /\  B  e. NN0* )  /\  B  e.  NN0 )  /\  A  e.  NN0 )  -> DECID  A  <_  B )
7 simpr 110 . . . . . 6  |-  ( ( ( ( A  e. NN0*  /\  B  e. NN0* )  /\  B  e.  NN0 )  /\  A  = +oo )  ->  A  = +oo )
8 simplr 528 . . . . . . . . 9  |-  ( ( ( ( A  e. NN0*  /\  B  e. NN0* )  /\  B  e.  NN0 )  /\  A  = +oo )  ->  B  e.  NN0 )
98nn0red 9423 . . . . . . . 8  |-  ( ( ( ( A  e. NN0*  /\  B  e. NN0* )  /\  B  e.  NN0 )  /\  A  = +oo )  ->  B  e.  RR )
109ltpnfd 9977 . . . . . . 7  |-  ( ( ( ( A  e. NN0*  /\  B  e. NN0* )  /\  B  e.  NN0 )  /\  A  = +oo )  ->  B  < +oo )
11 pnfxr 8199 . . . . . . . . 9  |- +oo  e.  RR*
129rexrd 8196 . . . . . . . . 9  |-  ( ( ( ( A  e. NN0*  /\  B  e. NN0* )  /\  B  e.  NN0 )  /\  A  = +oo )  ->  B  e.  RR* )
13 xrlenlt 8211 . . . . . . . . 9  |-  ( ( +oo  e.  RR*  /\  B  e.  RR* )  ->  ( +oo  <_  B  <->  -.  B  < +oo ) )
1411, 12, 13sylancr 414 . . . . . . . 8  |-  ( ( ( ( A  e. NN0*  /\  B  e. NN0* )  /\  B  e.  NN0 )  /\  A  = +oo )  ->  ( +oo  <_  B  <->  -.  B  < +oo )
)
1514biimpd 144 . . . . . . 7  |-  ( ( ( ( A  e. NN0*  /\  B  e. NN0* )  /\  B  e.  NN0 )  /\  A  = +oo )  ->  ( +oo  <_  B  ->  -.  B  < +oo ) )
1610, 15mt2d 628 . . . . . 6  |-  ( ( ( ( A  e. NN0*  /\  B  e. NN0* )  /\  B  e.  NN0 )  /\  A  = +oo )  ->  -. +oo  <_  B
)
177, 16eqnbrtrd 4101 . . . . 5  |-  ( ( ( ( A  e. NN0*  /\  B  e. NN0* )  /\  B  e.  NN0 )  /\  A  = +oo )  ->  -.  A  <_  B
)
1817olcd 739 . . . 4  |-  ( ( ( ( A  e. NN0*  /\  B  e. NN0* )  /\  B  e.  NN0 )  /\  A  = +oo )  ->  ( A  <_  B  \/  -.  A  <_  B
) )
19 df-dc 840 . . . 4  |-  (DECID  A  <_  B 
<->  ( A  <_  B  \/  -.  A  <_  B
) )
2018, 19sylibr 134 . . 3  |-  ( ( ( ( A  e. NN0*  /\  B  e. NN0* )  /\  B  e.  NN0 )  /\  A  = +oo )  -> DECID  A  <_  B )
21 elxnn0 9434 . . . . 5  |-  ( A  e. NN0* 
<->  ( A  e.  NN0  \/  A  = +oo )
)
2221biimpi 120 . . . 4  |-  ( A  e. NN0*  ->  ( A  e. 
NN0  \/  A  = +oo ) )
2322ad2antrr 488 . . 3  |-  ( ( ( A  e. NN0*  /\  B  e. NN0* )  /\  B  e.  NN0 )  ->  ( A  e.  NN0  \/  A  = +oo ) )
246, 20, 23mpjaodan 803 . 2  |-  ( ( ( A  e. NN0*  /\  B  e. NN0* )  /\  B  e.  NN0 )  -> DECID  A  <_  B )
25 xnn0xr 9437 . . . . . . 7  |-  ( A  e. NN0*  ->  A  e.  RR* )
2625ad2antrr 488 . . . . . 6  |-  ( ( ( A  e. NN0*  /\  B  e. NN0* )  /\  B  = +oo )  ->  A  e.  RR* )
27 pnfge 9985 . . . . . 6  |-  ( A  e.  RR*  ->  A  <_ +oo )
2826, 27syl 14 . . . . 5  |-  ( ( ( A  e. NN0*  /\  B  e. NN0* )  /\  B  = +oo )  ->  A  <_ +oo )
29 simpr 110 . . . . 5  |-  ( ( ( A  e. NN0*  /\  B  e. NN0* )  /\  B  = +oo )  ->  B  = +oo )
3028, 29breqtrrd 4111 . . . 4  |-  ( ( ( A  e. NN0*  /\  B  e. NN0* )  /\  B  = +oo )  ->  A  <_  B )
3130orcd 738 . . 3  |-  ( ( ( A  e. NN0*  /\  B  e. NN0* )  /\  B  = +oo )  ->  ( A  <_  B  \/  -.  A  <_  B ) )
3231, 19sylibr 134 . 2  |-  ( ( ( A  e. NN0*  /\  B  e. NN0* )  /\  B  = +oo )  -> DECID  A  <_  B )
33 elxnn0 9434 . . . 4  |-  ( B  e. NN0* 
<->  ( B  e.  NN0  \/  B  = +oo )
)
3433biimpi 120 . . 3  |-  ( B  e. NN0*  ->  ( B  e. 
NN0  \/  B  = +oo ) )
3534adantl 277 . 2  |-  ( ( A  e. NN0*  /\  B  e. NN0* )  ->  ( B  e.  NN0  \/  B  = +oo ) )
3624, 32, 35mpjaodan 803 1  |-  ( ( A  e. NN0*  /\  B  e. NN0* )  -> DECID  A  <_  B )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 713  DECID wdc 839    = wceq 1395    e. wcel 2200   class class class wbr 4083   +oocpnf 8178   RR*cxr 8180    < clt 8181    <_ cle 8182   NN0cn0 9369  NN0*cxnn0 9432   ZZcz 9446
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-addcom 8099  ax-addass 8101  ax-distr 8103  ax-i2m1 8104  ax-0lt1 8105  ax-0id 8107  ax-rnegex 8108  ax-cnre 8110  ax-pre-ltirr 8111  ax-pre-ltwlin 8112  ax-pre-lttrn 8113  ax-pre-ltadd 8115
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-br 4084  df-opab 4146  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-iota 5278  df-fun 5320  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187  df-sub 8319  df-neg 8320  df-inn 9111  df-n0 9370  df-xnn0 9433  df-z 9447
This theorem is referenced by:  pcgcd  12852
  Copyright terms: Public domain W3C validator