![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eqnbrtrd | GIF version |
Description: Substitution of equal classes into the negation of a binary relation. (Contributed by Glauco Siliprandi, 3-Jan-2021.) |
Ref | Expression |
---|---|
eqnbrtrd.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
eqnbrtrd.2 | ⊢ (𝜑 → ¬ 𝐵𝑅𝐶) |
Ref | Expression |
---|---|
eqnbrtrd | ⊢ (𝜑 → ¬ 𝐴𝑅𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqnbrtrd.2 | . 2 ⊢ (𝜑 → ¬ 𝐵𝑅𝐶) | |
2 | eqnbrtrd.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
3 | 2 | breq1d 4039 | . 2 ⊢ (𝜑 → (𝐴𝑅𝐶 ↔ 𝐵𝑅𝐶)) |
4 | 1, 3 | mtbird 674 | 1 ⊢ (𝜑 → ¬ 𝐴𝑅𝐶) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1364 class class class wbr 4029 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-v 2762 df-un 3157 df-sn 3624 df-pr 3625 df-op 3627 df-br 4030 |
This theorem is referenced by: xnn0dcle 9868 xqltnle 10336 pczndvds 12454 pcadd 12478 gausslemma2dlem1a 15174 |
Copyright terms: Public domain | W3C validator |