| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqnbrtrd | GIF version | ||
| Description: Substitution of equal classes into the negation of a binary relation. (Contributed by Glauco Siliprandi, 3-Jan-2021.) |
| Ref | Expression |
|---|---|
| eqnbrtrd.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| eqnbrtrd.2 | ⊢ (𝜑 → ¬ 𝐵𝑅𝐶) |
| Ref | Expression |
|---|---|
| eqnbrtrd | ⊢ (𝜑 → ¬ 𝐴𝑅𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqnbrtrd.2 | . 2 ⊢ (𝜑 → ¬ 𝐵𝑅𝐶) | |
| 2 | eqnbrtrd.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 3 | 2 | breq1d 4069 | . 2 ⊢ (𝜑 → (𝐴𝑅𝐶 ↔ 𝐵𝑅𝐶)) |
| 4 | 1, 3 | mtbird 675 | 1 ⊢ (𝜑 → ¬ 𝐴𝑅𝐶) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1373 class class class wbr 4059 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-v 2778 df-un 3178 df-sn 3649 df-pr 3650 df-op 3652 df-br 4060 |
| This theorem is referenced by: xnn0dcle 9959 xqltnle 10447 pczndvds 12754 pcadd 12778 gausslemma2dlem1a 15650 |
| Copyright terms: Public domain | W3C validator |