ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqnbrtrd GIF version

Theorem eqnbrtrd 4077
Description: Substitution of equal classes into the negation of a binary relation. (Contributed by Glauco Siliprandi, 3-Jan-2021.)
Hypotheses
Ref Expression
eqnbrtrd.1 (𝜑𝐴 = 𝐵)
eqnbrtrd.2 (𝜑 → ¬ 𝐵𝑅𝐶)
Assertion
Ref Expression
eqnbrtrd (𝜑 → ¬ 𝐴𝑅𝐶)

Proof of Theorem eqnbrtrd
StepHypRef Expression
1 eqnbrtrd.2 . 2 (𝜑 → ¬ 𝐵𝑅𝐶)
2 eqnbrtrd.1 . . 3 (𝜑𝐴 = 𝐵)
32breq1d 4069 . 2 (𝜑 → (𝐴𝑅𝐶𝐵𝑅𝐶))
41, 3mtbird 675 1 (𝜑 → ¬ 𝐴𝑅𝐶)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1373   class class class wbr 4059
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-v 2778  df-un 3178  df-sn 3649  df-pr 3650  df-op 3652  df-br 4060
This theorem is referenced by:  xnn0dcle  9959  xqltnle  10447  pczndvds  12754  pcadd  12778  gausslemma2dlem1a  15650
  Copyright terms: Public domain W3C validator