ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nbrne1 Unicode version

Theorem nbrne1 4000
Description: Two classes are different if they don't have the same relationship to a third class. (Contributed by NM, 3-Jun-2012.)
Assertion
Ref Expression
nbrne1  |-  ( ( A R B  /\  -.  A R C )  ->  B  =/=  C
)

Proof of Theorem nbrne1
StepHypRef Expression
1 breq2 3985 . . . 4  |-  ( B  =  C  ->  ( A R B  <->  A R C ) )
21biimpcd 158 . . 3  |-  ( A R B  ->  ( B  =  C  ->  A R C ) )
32necon3bd 2378 . 2  |-  ( A R B  ->  ( -.  A R C  ->  B  =/=  C ) )
43imp 123 1  |-  ( ( A R B  /\  -.  A R C )  ->  B  =/=  C
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    = wceq 1343    =/= wne 2335   class class class wbr 3981
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2296  df-ne 2336  df-v 2727  df-un 3119  df-sn 3581  df-pr 3582  df-op 3584  df-br 3982
This theorem is referenced by:  zeneo  11804
  Copyright terms: Public domain W3C validator