ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nbrne1 Unicode version

Theorem nbrne1 4052
Description: Two classes are different if they don't have the same relationship to a third class. (Contributed by NM, 3-Jun-2012.)
Assertion
Ref Expression
nbrne1  |-  ( ( A R B  /\  -.  A R C )  ->  B  =/=  C
)

Proof of Theorem nbrne1
StepHypRef Expression
1 breq2 4037 . . . 4  |-  ( B  =  C  ->  ( A R B  <->  A R C ) )
21biimpcd 159 . . 3  |-  ( A R B  ->  ( B  =  C  ->  A R C ) )
32necon3bd 2410 . 2  |-  ( A R B  ->  ( -.  A R C  ->  B  =/=  C ) )
43imp 124 1  |-  ( ( A R B  /\  -.  A R C )  ->  B  =/=  C
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    = wceq 1364    =/= wne 2367   class class class wbr 4033
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-v 2765  df-un 3161  df-sn 3628  df-pr 3629  df-op 3631  df-br 4034
This theorem is referenced by:  zeneo  12036
  Copyright terms: Public domain W3C validator