| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqtr2 | Unicode version | ||
| Description: A transitive law for class equality. (Contributed by NM, 20-May-2005.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
| Ref | Expression |
|---|---|
| eqtr2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqcom 2209 |
. 2
| |
| 2 | eqtr 2225 |
. 2
| |
| 3 | 1, 2 | sylanb 284 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-gen 1473 ax-4 1534 ax-17 1550 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-cleq 2200 |
| This theorem is referenced by: eqvinc 2903 eqvincg 2904 moop2 4314 reusv3i 4524 relop 4846 f0rn0 5492 fliftfun 5888 th3qlem1 6747 enq0ref 7581 enq0tr 7582 genpdisj 7671 addlsub 8477 wrd2ind 11214 fsum2dlemstep 11860 0dvds 12237 cncongr1 12540 4sqlem12 12840 |
| Copyright terms: Public domain | W3C validator |