| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqtr2 | Unicode version | ||
| Description: A transitive law for class equality. (Contributed by NM, 20-May-2005.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
| Ref | Expression |
|---|---|
| eqtr2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqcom 2207 |
. 2
| |
| 2 | eqtr 2223 |
. 2
| |
| 3 | 1, 2 | sylanb 284 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-gen 1472 ax-4 1533 ax-17 1549 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-cleq 2198 |
| This theorem is referenced by: eqvinc 2896 eqvincg 2897 moop2 4297 reusv3i 4507 relop 4829 f0rn0 5472 fliftfun 5867 th3qlem1 6726 enq0ref 7548 enq0tr 7549 genpdisj 7638 addlsub 8444 fsum2dlemstep 11778 0dvds 12155 cncongr1 12458 4sqlem12 12758 |
| Copyright terms: Public domain | W3C validator |