ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqtr2 Unicode version

Theorem eqtr2 2184
Description: A transitive law for class equality. (Contributed by NM, 20-May-2005.) (Proof shortened by Andrew Salmon, 25-May-2011.)
Assertion
Ref Expression
eqtr2  |-  ( ( A  =  B  /\  A  =  C )  ->  B  =  C )

Proof of Theorem eqtr2
StepHypRef Expression
1 eqcom 2167 . 2  |-  ( A  =  B  <->  B  =  A )
2 eqtr 2183 . 2  |-  ( ( B  =  A  /\  A  =  C )  ->  B  =  C )
31, 2sylanb 282 1  |-  ( ( A  =  B  /\  A  =  C )  ->  B  =  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1343
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-gen 1437  ax-4 1498  ax-17 1514  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-cleq 2158
This theorem is referenced by:  eqvinc  2849  eqvincg  2850  moop2  4229  reusv3i  4437  relop  4754  f0rn0  5382  fliftfun  5764  th3qlem1  6603  enq0ref  7374  enq0tr  7375  genpdisj  7464  addlsub  8268  fsum2dlemstep  11375  0dvds  11751  cncongr1  12035
  Copyright terms: Public domain W3C validator