| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > eqtr2 | Unicode version | ||
| Description: A transitive law for class equality. (Contributed by NM, 20-May-2005.) (Proof shortened by Andrew Salmon, 25-May-2011.) | 
| Ref | Expression | 
|---|---|
| eqtr2 | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eqcom 2198 | 
. 2
 | |
| 2 | eqtr 2214 | 
. 2
 | |
| 3 | 1, 2 | sylanb 284 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-4 1524 ax-17 1540 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-cleq 2189 | 
| This theorem is referenced by: eqvinc 2887 eqvincg 2888 moop2 4284 reusv3i 4494 relop 4816 f0rn0 5452 fliftfun 5843 th3qlem1 6696 enq0ref 7500 enq0tr 7501 genpdisj 7590 addlsub 8396 fsum2dlemstep 11599 0dvds 11976 cncongr1 12271 4sqlem12 12571 | 
| Copyright terms: Public domain | W3C validator |