| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqtr2 | Unicode version | ||
| Description: A transitive law for class equality. (Contributed by NM, 20-May-2005.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
| Ref | Expression |
|---|---|
| eqtr2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqcom 2231 |
. 2
| |
| 2 | eqtr 2247 |
. 2
| |
| 3 | 1, 2 | sylanb 284 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-gen 1495 ax-4 1556 ax-17 1572 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-cleq 2222 |
| This theorem is referenced by: eqvinc 2926 eqvincg 2927 moop2 4338 reusv3i 4550 relop 4872 f0rn0 5520 fliftfun 5920 th3qlem1 6784 enq0ref 7620 enq0tr 7621 genpdisj 7710 addlsub 8516 wrd2ind 11255 fsum2dlemstep 11945 0dvds 12322 cncongr1 12625 4sqlem12 12925 uhgr2edg 16004 usgredgreu 16014 uspgredg2vtxeu 16016 |
| Copyright terms: Public domain | W3C validator |