| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqtr | Unicode version | ||
| Description: Transitive law for class equality. Proposition 4.7(3) of [TakeutiZaring] p. 13. (Contributed by NM, 25-Jan-2004.) |
| Ref | Expression |
|---|---|
| eqtr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq1 2203 |
. 2
| |
| 2 | 1 | biimpar 297 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-4 1524 ax-17 1540 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-cleq 2189 |
| This theorem is referenced by: eqtr2 2215 eqtr3 2216 sylan9eq 2249 eqvinc 2887 eqvincg 2888 uneqdifeqim 3536 preqsn 3805 dtruex 4595 relresfld 5199 relcoi1 5201 eqer 6624 xpider 6665 addlsub 8396 bj-findis 15625 |
| Copyright terms: Public domain | W3C validator |