ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqtr Unicode version

Theorem eqtr 2225
Description: Transitive law for class equality. Proposition 4.7(3) of [TakeutiZaring] p. 13. (Contributed by NM, 25-Jan-2004.)
Assertion
Ref Expression
eqtr  |-  ( ( A  =  B  /\  B  =  C )  ->  A  =  C )

Proof of Theorem eqtr
StepHypRef Expression
1 eqeq1 2214 . 2  |-  ( A  =  B  ->  ( A  =  C  <->  B  =  C ) )
21biimpar 297 1  |-  ( ( A  =  B  /\  B  =  C )  ->  A  =  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1471  ax-gen 1473  ax-4 1534  ax-17 1550  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-cleq 2200
This theorem is referenced by:  eqtr2  2226  eqtr3  2227  sylan9eq  2260  eqvinc  2903  eqvincg  2904  uneqdifeqim  3554  preqsn  3829  dtruex  4625  relresfld  5231  relcoi1  5233  eqer  6675  xpider  6716  addlsub  8477  bj-findis  16114
  Copyright terms: Public domain W3C validator