| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqtr | Unicode version | ||
| Description: Transitive law for class equality. Proposition 4.7(3) of [TakeutiZaring] p. 13. (Contributed by NM, 25-Jan-2004.) |
| Ref | Expression |
|---|---|
| eqtr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq1 2214 |
. 2
| |
| 2 | 1 | biimpar 297 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-gen 1473 ax-4 1534 ax-17 1550 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-cleq 2200 |
| This theorem is referenced by: eqtr2 2226 eqtr3 2227 sylan9eq 2260 eqvinc 2903 eqvincg 2904 uneqdifeqim 3554 preqsn 3829 dtruex 4625 relresfld 5231 relcoi1 5233 eqer 6675 xpider 6716 addlsub 8477 bj-findis 16114 |
| Copyright terms: Public domain | W3C validator |