| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > eqtr | Unicode version | ||
| Description: Transitive law for class equality. Proposition 4.7(3) of [TakeutiZaring] p. 13. (Contributed by NM, 25-Jan-2004.) | 
| Ref | Expression | 
|---|---|
| eqtr | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eqeq1 2203 | 
. 2
 | |
| 2 | 1 | biimpar 297 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-4 1524 ax-17 1540 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-cleq 2189 | 
| This theorem is referenced by: eqtr2 2215 eqtr3 2216 sylan9eq 2249 eqvinc 2887 eqvincg 2888 uneqdifeqim 3536 preqsn 3805 dtruex 4595 relresfld 5199 relcoi1 5201 eqer 6624 xpider 6665 addlsub 8396 bj-findis 15625 | 
| Copyright terms: Public domain | W3C validator |