Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eqtr | Unicode version |
Description: Transitive law for class equality. Proposition 4.7(3) of [TakeutiZaring] p. 13. (Contributed by NM, 25-Jan-2004.) |
Ref | Expression |
---|---|
eqtr |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq1 2172 | . 2 | |
2 | 1 | biimpar 295 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1343 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-gen 1437 ax-4 1498 ax-17 1514 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-cleq 2158 |
This theorem is referenced by: eqtr2 2184 eqtr3 2185 sylan9eq 2219 eqvinc 2849 eqvincg 2850 uneqdifeqim 3494 preqsn 3755 dtruex 4536 relresfld 5133 relcoi1 5135 eqer 6533 xpider 6572 addlsub 8268 bj-findis 13861 |
Copyright terms: Public domain | W3C validator |