Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mp2b | Unicode version |
Description: A double modus ponens inference. (Contributed by Mario Carneiro, 24-Jan-2013.) |
Ref | Expression |
---|---|
mp2b.1 | |
mp2b.2 | |
mp2b.3 |
Ref | Expression |
---|---|
mp2b |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mp2b.1 | . . 3 | |
2 | mp2b.2 | . . 3 | |
3 | 1, 2 | ax-mp 5 | . 2 |
4 | mp2b.3 | . 2 | |
5 | 3, 4 | ax-mp 5 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 |
This theorem was proved from axioms: ax-mp 5 |
This theorem is referenced by: eqvinc 2853 2ordpr 4508 regexmid 4519 ordsoexmid 4546 reg3exmid 4564 intasym 4995 relcoi1 5142 funres11 5270 cnvresid 5272 mpofvex 6182 df1st2 6198 df2nd2 6199 dftpos4 6242 tposf12 6248 frecabcl 6378 xp01disjl 6413 xpcomco 6804 ominf 6874 sbthlem2 6935 djuunr 7043 eldju 7045 ctssdccl 7088 ctssdclemr 7089 omct 7094 ctssexmid 7126 rec1nq 7357 halfnqq 7372 caucvgsrlemasr 7752 axresscn 7822 0re 7920 gtso 7998 cnegexlem2 8095 uzn0 9502 indstr 9552 dfioo2 9931 fnn0nninf 10393 hashinfuni 10711 hashp1i 10745 cnrecnv 10874 rexanuz 10952 xrmaxiflemcom 11212 climdm 11258 sumsnf 11372 tanvalap 11671 egt2lt3 11742 lcmgcdlem 12031 3prm 12082 sqpweven 12129 2sqpwodd 12130 qnumval 12139 qdenval 12140 xpnnen 12349 ennnfonelemhdmp1 12364 ennnfonelemss 12365 ennnfonelemnn0 12377 qnnen 12386 ctiunctal 12396 unct 12397 structcnvcnv 12432 setsslid 12466 tgrest 12963 lmbr2 13008 cnptoprest 13033 lmff 13043 tx1cn 13063 tx2cn 13064 cnblcld 13329 tgioo 13340 reeff1o 13488 pilem1 13494 efhalfpi 13514 coseq0negpitopi 13551 012of 14028 pw1nct 14036 iswomninnlem 14081 |
Copyright terms: Public domain | W3C validator |