| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mp2b | Unicode version | ||
| Description: A double modus ponens inference. (Contributed by Mario Carneiro, 24-Jan-2013.) |
| Ref | Expression |
|---|---|
| mp2b.1 |
|
| mp2b.2 |
|
| mp2b.3 |
|
| Ref | Expression |
|---|---|
| mp2b |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mp2b.1 |
. . 3
| |
| 2 | mp2b.2 |
. . 3
| |
| 3 | 1, 2 | ax-mp 5 |
. 2
|
| 4 | mp2b.3 |
. 2
| |
| 5 | 3, 4 | ax-mp 5 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 |
| This theorem is referenced by: eqvinc 2895 2ordpr 4571 regexmid 4582 ordsoexmid 4609 reg3exmid 4627 intasym 5066 relcoi1 5213 funres11 5345 cnvresid 5347 mpofvex 6290 df1st2 6304 df2nd2 6305 dftpos4 6348 tposf12 6354 frecabcl 6484 xp01disjl 6519 xpcomco 6920 ominf 6992 sbthlem2 7059 djuunr 7167 eldju 7169 ctssdccl 7212 ctssdclemr 7213 omct 7218 ctssexmid 7251 rec1nq 7507 halfnqq 7522 caucvgsrlemasr 7902 axresscn 7972 0re 8071 gtso 8150 cnegexlem2 8247 uzn0 9663 indstr 9713 dfioo2 10095 fnn0nninf 10581 hashinfuni 10920 hashp1i 10953 cnrecnv 11192 rexanuz 11270 xrmaxiflemcom 11531 climdm 11577 sumsnf 11691 tanvalap 11990 egt2lt3 12062 lcmgcdlem 12370 3prm 12421 sqpweven 12468 2sqpwodd 12469 qnumval 12478 qdenval 12479 modxai 12710 xpnnen 12736 ennnfonelemhdmp1 12751 ennnfonelemss 12752 ennnfonelemnn0 12764 qnnen 12773 ctiunctal 12783 unct 12784 structcnvcnv 12819 setsslid 12854 prdsvallem 13075 prdsval 13076 xpsfrn 13153 xpsff1o2 13154 ringn0 13793 rmodislmodlem 14083 cnfldstr 14291 cnfldadd 14295 cnfldmul 14297 cnfldsub 14308 cnsubmlem 14311 cnsubglem 14312 zring0 14333 tgrest 14612 lmbr2 14657 cnptoprest 14682 lmff 14692 tx1cn 14712 tx2cn 14713 cnblcld 14978 cnfldms 14979 cnfldtopn 14982 tgioo 14997 reeff1o 15216 pilem1 15222 efhalfpi 15242 coseq0negpitopi 15279 012of 15892 pw1nct 15902 nnnninfen 15920 iswomninnlem 15950 |
| Copyright terms: Public domain | W3C validator |