| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mp2b | Unicode version | ||
| Description: A double modus ponens inference. (Contributed by Mario Carneiro, 24-Jan-2013.) |
| Ref | Expression |
|---|---|
| mp2b.1 |
|
| mp2b.2 |
|
| mp2b.3 |
|
| Ref | Expression |
|---|---|
| mp2b |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mp2b.1 |
. . 3
| |
| 2 | mp2b.2 |
. . 3
| |
| 3 | 1, 2 | ax-mp 5 |
. 2
|
| 4 | mp2b.3 |
. 2
| |
| 5 | 3, 4 | ax-mp 5 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 |
| This theorem is referenced by: eqvinc 2895 2ordpr 4571 regexmid 4582 ordsoexmid 4609 reg3exmid 4627 intasym 5066 relcoi1 5213 funres11 5345 cnvresid 5347 mpofvex 6290 df1st2 6304 df2nd2 6305 dftpos4 6348 tposf12 6354 frecabcl 6484 xp01disjl 6519 xpcomco 6920 ominf 6992 sbthlem2 7059 djuunr 7167 eldju 7169 ctssdccl 7212 ctssdclemr 7213 omct 7218 ctssexmid 7251 rec1nq 7507 halfnqq 7522 caucvgsrlemasr 7902 axresscn 7972 0re 8071 gtso 8150 cnegexlem2 8247 uzn0 9663 indstr 9713 dfioo2 10095 fnn0nninf 10581 hashinfuni 10920 hashp1i 10953 cnrecnv 11163 rexanuz 11241 xrmaxiflemcom 11502 climdm 11548 sumsnf 11662 tanvalap 11961 egt2lt3 12033 lcmgcdlem 12341 3prm 12392 sqpweven 12439 2sqpwodd 12440 qnumval 12449 qdenval 12450 modxai 12681 xpnnen 12707 ennnfonelemhdmp1 12722 ennnfonelemss 12723 ennnfonelemnn0 12735 qnnen 12744 ctiunctal 12754 unct 12755 structcnvcnv 12790 setsslid 12825 prdsvallem 13046 prdsval 13047 xpsfrn 13124 xpsff1o2 13125 ringn0 13764 rmodislmodlem 14054 cnfldstr 14262 cnfldadd 14266 cnfldmul 14268 cnfldsub 14279 cnsubmlem 14282 cnsubglem 14283 zring0 14304 tgrest 14583 lmbr2 14628 cnptoprest 14653 lmff 14663 tx1cn 14683 tx2cn 14684 cnblcld 14949 cnfldms 14950 cnfldtopn 14953 tgioo 14968 reeff1o 15187 pilem1 15193 efhalfpi 15213 coseq0negpitopi 15250 012of 15863 pw1nct 15873 nnnninfen 15891 iswomninnlem 15921 |
| Copyright terms: Public domain | W3C validator |