| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mp2b | Unicode version | ||
| Description: A double modus ponens inference. (Contributed by Mario Carneiro, 24-Jan-2013.) |
| Ref | Expression |
|---|---|
| mp2b.1 |
|
| mp2b.2 |
|
| mp2b.3 |
|
| Ref | Expression |
|---|---|
| mp2b |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mp2b.1 |
. . 3
| |
| 2 | mp2b.2 |
. . 3
| |
| 3 | 1, 2 | ax-mp 5 |
. 2
|
| 4 | mp2b.3 |
. 2
| |
| 5 | 3, 4 | ax-mp 5 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 |
| This theorem is referenced by: eqvinc 2900 2ordpr 4585 regexmid 4596 ordsoexmid 4623 reg3exmid 4641 intasym 5081 relcoi1 5228 funres11 5360 cnvresid 5362 mpofvex 6309 df1st2 6323 df2nd2 6324 dftpos4 6367 tposf12 6373 frecabcl 6503 xp01disjl 6538 xpcomco 6941 1ndom2 6982 ominf 7014 sbthlem2 7081 djuunr 7189 eldju 7191 ctssdccl 7234 ctssdclemr 7235 omct 7240 ctssexmid 7273 rec1nq 7538 halfnqq 7553 caucvgsrlemasr 7933 axresscn 8003 0re 8102 gtso 8181 cnegexlem2 8278 uzn0 9694 indstr 9744 dfioo2 10126 fnn0nninf 10615 hashinfuni 10954 hashp1i 10987 cnrecnv 11306 rexanuz 11384 xrmaxiflemcom 11645 climdm 11691 sumsnf 11805 tanvalap 12104 egt2lt3 12176 lcmgcdlem 12484 3prm 12535 sqpweven 12582 2sqpwodd 12583 qnumval 12592 qdenval 12593 modxai 12824 xpnnen 12850 ennnfonelemhdmp1 12865 ennnfonelemss 12866 ennnfonelemnn0 12878 qnnen 12887 ctiunctal 12897 unct 12898 structcnvcnv 12933 setsslid 12968 prdsvallem 13189 prdsval 13190 xpsfrn 13267 xpsff1o2 13268 ringn0 13907 rmodislmodlem 14197 cnfldstr 14405 cnfldadd 14409 cnfldmul 14411 cnfldsub 14422 cnsubmlem 14425 cnsubglem 14426 zring0 14447 tgrest 14726 lmbr2 14771 cnptoprest 14796 lmff 14806 tx1cn 14826 tx2cn 14827 cnblcld 15092 cnfldms 15093 cnfldtopn 15096 tgioo 15111 reeff1o 15330 pilem1 15336 efhalfpi 15356 coseq0negpitopi 15393 012of 16100 pw1nct 16112 nnnninfen 16130 iswomninnlem 16160 |
| Copyright terms: Public domain | W3C validator |