| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mp2b | Unicode version | ||
| Description: A double modus ponens inference. (Contributed by Mario Carneiro, 24-Jan-2013.) |
| Ref | Expression |
|---|---|
| mp2b.1 |
|
| mp2b.2 |
|
| mp2b.3 |
|
| Ref | Expression |
|---|---|
| mp2b |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mp2b.1 |
. . 3
| |
| 2 | mp2b.2 |
. . 3
| |
| 3 | 1, 2 | ax-mp 5 |
. 2
|
| 4 | mp2b.3 |
. 2
| |
| 5 | 3, 4 | ax-mp 5 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 |
| This theorem is referenced by: eqvinc 2926 2ordpr 4615 regexmid 4626 ordsoexmid 4653 reg3exmid 4671 intasym 5112 relcoi1 5259 funres11 5392 cnvresid 5394 mpofvex 6349 df1st2 6363 df2nd2 6364 dftpos4 6407 tposf12 6413 frecabcl 6543 xp01disjl 6578 xpcomco 6981 1ndom2 7022 ominf 7054 sbthlem2 7121 djuunr 7229 eldju 7231 ctssdccl 7274 ctssdclemr 7275 omct 7280 ctssexmid 7313 rec1nq 7578 halfnqq 7593 caucvgsrlemasr 7973 axresscn 8043 0re 8142 gtso 8221 cnegexlem2 8318 uzn0 9734 indstr 9784 dfioo2 10166 fnn0nninf 10655 hashinfuni 10994 hashp1i 11027 cnrecnv 11416 rexanuz 11494 xrmaxiflemcom 11755 climdm 11801 sumsnf 11915 tanvalap 12214 egt2lt3 12286 lcmgcdlem 12594 3prm 12645 sqpweven 12692 2sqpwodd 12693 qnumval 12702 qdenval 12703 modxai 12934 xpnnen 12960 ennnfonelemhdmp1 12975 ennnfonelemss 12976 ennnfonelemnn0 12988 qnnen 12997 ctiunctal 13007 unct 13008 structcnvcnv 13043 setsslid 13078 prdsvallem 13300 prdsval 13301 xpsfrn 13378 xpsff1o2 13379 ringn0 14018 rmodislmodlem 14308 cnfldstr 14516 cnfldadd 14520 cnfldmul 14522 cnfldsub 14533 cnsubmlem 14536 cnsubglem 14537 zring0 14558 tgrest 14837 lmbr2 14882 cnptoprest 14907 lmff 14917 tx1cn 14937 tx2cn 14938 cnblcld 15203 cnfldms 15204 cnfldtopn 15207 tgioo 15222 reeff1o 15441 pilem1 15447 efhalfpi 15467 coseq0negpitopi 15504 012of 16316 pw1nct 16328 nnnninfen 16346 iswomninnlem 16376 |
| Copyright terms: Public domain | W3C validator |