Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mp2b | Unicode version |
Description: A double modus ponens inference. (Contributed by Mario Carneiro, 24-Jan-2013.) |
Ref | Expression |
---|---|
mp2b.1 | |
mp2b.2 | |
mp2b.3 |
Ref | Expression |
---|---|
mp2b |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mp2b.1 | . . 3 | |
2 | mp2b.2 | . . 3 | |
3 | 1, 2 | ax-mp 5 | . 2 |
4 | mp2b.3 | . 2 | |
5 | 3, 4 | ax-mp 5 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 |
This theorem was proved from axioms: ax-mp 5 |
This theorem is referenced by: eqvinc 2858 2ordpr 4517 regexmid 4528 ordsoexmid 4555 reg3exmid 4573 intasym 5005 relcoi1 5152 funres11 5280 cnvresid 5282 mpofvex 6194 df1st2 6210 df2nd2 6211 dftpos4 6254 tposf12 6260 frecabcl 6390 xp01disjl 6425 xpcomco 6816 ominf 6886 sbthlem2 6947 djuunr 7055 eldju 7057 ctssdccl 7100 ctssdclemr 7101 omct 7106 ctssexmid 7138 rec1nq 7369 halfnqq 7384 caucvgsrlemasr 7764 axresscn 7834 0re 7932 gtso 8010 cnegexlem2 8107 uzn0 9514 indstr 9564 dfioo2 9943 fnn0nninf 10405 hashinfuni 10723 hashp1i 10756 cnrecnv 10885 rexanuz 10963 xrmaxiflemcom 11223 climdm 11269 sumsnf 11383 tanvalap 11682 egt2lt3 11753 lcmgcdlem 12042 3prm 12093 sqpweven 12140 2sqpwodd 12141 qnumval 12150 qdenval 12151 xpnnen 12360 ennnfonelemhdmp1 12375 ennnfonelemss 12376 ennnfonelemnn0 12388 qnnen 12397 ctiunctal 12407 unct 12408 structcnvcnv 12443 setsslid 12477 ringn0 13029 tgrest 13220 lmbr2 13265 cnptoprest 13290 lmff 13300 tx1cn 13320 tx2cn 13321 cnblcld 13586 tgioo 13597 reeff1o 13745 pilem1 13751 efhalfpi 13771 coseq0negpitopi 13808 012of 14285 pw1nct 14293 iswomninnlem 14338 |
Copyright terms: Public domain | W3C validator |