| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mp2b | Unicode version | ||
| Description: A double modus ponens inference. (Contributed by Mario Carneiro, 24-Jan-2013.) |
| Ref | Expression |
|---|---|
| mp2b.1 |
|
| mp2b.2 |
|
| mp2b.3 |
|
| Ref | Expression |
|---|---|
| mp2b |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mp2b.1 |
. . 3
| |
| 2 | mp2b.2 |
. . 3
| |
| 3 | 1, 2 | ax-mp 5 |
. 2
|
| 4 | mp2b.3 |
. 2
| |
| 5 | 3, 4 | ax-mp 5 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 |
| This theorem is referenced by: eqvinc 2887 2ordpr 4561 regexmid 4572 ordsoexmid 4599 reg3exmid 4617 intasym 5055 relcoi1 5202 funres11 5331 cnvresid 5333 mpofvex 6272 df1st2 6286 df2nd2 6287 dftpos4 6330 tposf12 6336 frecabcl 6466 xp01disjl 6501 xpcomco 6894 ominf 6966 sbthlem2 7033 djuunr 7141 eldju 7143 ctssdccl 7186 ctssdclemr 7187 omct 7192 ctssexmid 7225 rec1nq 7479 halfnqq 7494 caucvgsrlemasr 7874 axresscn 7944 0re 8043 gtso 8122 cnegexlem2 8219 uzn0 9634 indstr 9684 dfioo2 10066 fnn0nninf 10547 hashinfuni 10886 hashp1i 10919 cnrecnv 11092 rexanuz 11170 xrmaxiflemcom 11431 climdm 11477 sumsnf 11591 tanvalap 11890 egt2lt3 11962 lcmgcdlem 12270 3prm 12321 sqpweven 12368 2sqpwodd 12369 qnumval 12378 qdenval 12379 modxai 12610 xpnnen 12636 ennnfonelemhdmp1 12651 ennnfonelemss 12652 ennnfonelemnn0 12664 qnnen 12673 ctiunctal 12683 unct 12684 structcnvcnv 12719 setsslid 12754 prdsvallem 12974 prdsval 12975 xpsfrn 13052 xpsff1o2 13053 ringn0 13692 rmodislmodlem 13982 cnfldstr 14190 cnfldadd 14194 cnfldmul 14196 cnfldsub 14207 cnsubmlem 14210 cnsubglem 14211 zring0 14232 tgrest 14489 lmbr2 14534 cnptoprest 14559 lmff 14569 tx1cn 14589 tx2cn 14590 cnblcld 14855 cnfldms 14856 cnfldtopn 14859 tgioo 14874 reeff1o 15093 pilem1 15099 efhalfpi 15119 coseq0negpitopi 15156 012of 15724 pw1nct 15734 nnnninfen 15752 iswomninnlem 15780 |
| Copyright terms: Public domain | W3C validator |