![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > mp2b | Unicode version |
Description: A double modus ponens inference. (Contributed by Mario Carneiro, 24-Jan-2013.) |
Ref | Expression |
---|---|
mp2b.1 |
![]() ![]() |
mp2b.2 |
![]() ![]() ![]() ![]() ![]() ![]() |
mp2b.3 |
![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
mp2b |
![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mp2b.1 |
. . 3
![]() ![]() | |
2 | mp2b.2 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | ax-mp 5 |
. 2
![]() ![]() |
4 | mp2b.3 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() | |
5 | 3, 4 | ax-mp 5 |
1
![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() |
This theorem was proved from axioms: ax-mp 5 |
This theorem is referenced by: eqvinc 2883 2ordpr 4556 regexmid 4567 ordsoexmid 4594 reg3exmid 4612 intasym 5050 relcoi1 5197 funres11 5326 cnvresid 5328 mpofvex 6256 df1st2 6272 df2nd2 6273 dftpos4 6316 tposf12 6322 frecabcl 6452 xp01disjl 6487 xpcomco 6880 ominf 6952 sbthlem2 7017 djuunr 7125 eldju 7127 ctssdccl 7170 ctssdclemr 7171 omct 7176 ctssexmid 7209 rec1nq 7455 halfnqq 7470 caucvgsrlemasr 7850 axresscn 7920 0re 8019 gtso 8098 cnegexlem2 8195 uzn0 9608 indstr 9658 dfioo2 10040 fnn0nninf 10509 hashinfuni 10848 hashp1i 10881 cnrecnv 11054 rexanuz 11132 xrmaxiflemcom 11392 climdm 11438 sumsnf 11552 tanvalap 11851 egt2lt3 11923 lcmgcdlem 12215 3prm 12266 sqpweven 12313 2sqpwodd 12314 qnumval 12323 qdenval 12324 xpnnen 12551 ennnfonelemhdmp1 12566 ennnfonelemss 12567 ennnfonelemnn0 12579 qnnen 12588 ctiunctal 12598 unct 12599 structcnvcnv 12634 setsslid 12669 xpsfrn 12933 xpsff1o2 12934 ringn0 13556 rmodislmodlem 13846 mpocnfldadd 14053 mpocnfldmul 14055 cnfldsub 14063 cnsubmlem 14066 cnsubglem 14067 zring0 14088 tgrest 14337 lmbr2 14382 cnptoprest 14407 lmff 14417 tx1cn 14437 tx2cn 14438 cnblcld 14703 tgioo 14714 reeff1o 14908 pilem1 14914 efhalfpi 14934 coseq0negpitopi 14971 012of 15486 pw1nct 15493 nnnninfen 15511 iswomninnlem 15539 |
Copyright terms: Public domain | W3C validator |