| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eu4 | GIF version | ||
| Description: Uniqueness using implicit substitution. (Contributed by NM, 26-Jul-1995.) |
| Ref | Expression |
|---|---|
| eu4.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| eu4 | ⊢ (∃!𝑥𝜑 ↔ (∃𝑥𝜑 ∧ ∀𝑥∀𝑦((𝜑 ∧ 𝜓) → 𝑥 = 𝑦))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eu5 2102 | . 2 ⊢ (∃!𝑥𝜑 ↔ (∃𝑥𝜑 ∧ ∃*𝑥𝜑)) | |
| 2 | eu4.1 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
| 3 | 2 | mo4 2116 | . . 3 ⊢ (∃*𝑥𝜑 ↔ ∀𝑥∀𝑦((𝜑 ∧ 𝜓) → 𝑥 = 𝑦)) |
| 4 | 3 | anbi2i 457 | . 2 ⊢ ((∃𝑥𝜑 ∧ ∃*𝑥𝜑) ↔ (∃𝑥𝜑 ∧ ∀𝑥∀𝑦((𝜑 ∧ 𝜓) → 𝑥 = 𝑦))) |
| 5 | 1, 4 | bitri 184 | 1 ⊢ (∃!𝑥𝜑 ↔ (∃𝑥𝜑 ∧ ∀𝑥∀𝑦((𝜑 ∧ 𝜓) → 𝑥 = 𝑦))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∀wal 1371 ∃wex 1516 ∃!weu 2055 ∃*wmo 2056 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 |
| This theorem is referenced by: euequ1 2150 eueq 2948 euind 2964 eusv1 4512 eroveu 6731 climeu 11692 pceu 12703 |
| Copyright terms: Public domain | W3C validator |