ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pceu Unicode version

Theorem pceu 12651
Description: Uniqueness for the prime power function. (Contributed by Mario Carneiro, 23-Feb-2014.)
Hypotheses
Ref Expression
pcval.1  |-  S  =  sup ( { n  e.  NN0  |  ( P ^ n )  ||  x } ,  RR ,  <  )
pcval.2  |-  T  =  sup ( { n  e.  NN0  |  ( P ^ n )  ||  y } ,  RR ,  <  )
Assertion
Ref Expression
pceu  |-  ( ( P  e.  Prime  /\  ( N  e.  QQ  /\  N  =/=  0 ) )  ->  E! z E. x  e.  ZZ  E. y  e.  NN  ( N  =  ( x  /  y
)  /\  z  =  ( S  -  T
) ) )
Distinct variable groups:    x, n, y, z, N    P, n, x, y, z    z, S   
z, T
Allowed substitution hints:    S( x, y, n)    T( x, y, n)

Proof of Theorem pceu
Dummy variables  s  t  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simprl 529 . . . 4  |-  ( ( P  e.  Prime  /\  ( N  e.  QQ  /\  N  =/=  0 ) )  ->  N  e.  QQ )
2 elq 9745 . . . 4  |-  ( N  e.  QQ  <->  E. x  e.  ZZ  E. y  e.  NN  N  =  ( x  /  y ) )
31, 2sylib 122 . . 3  |-  ( ( P  e.  Prime  /\  ( N  e.  QQ  /\  N  =/=  0 ) )  ->  E. x  e.  ZZ  E. y  e.  NN  N  =  ( x  / 
y ) )
4 simpr 110 . . . . . . . . . . 11  |-  ( ( ( ( ( P  e.  Prime  /\  ( N  e.  QQ  /\  N  =/=  0 ) )  /\  x  e.  ZZ )  /\  y  e.  NN )  /\  N  =  ( x  /  y ) )  ->  N  =  ( x  /  y
) )
5 simprr 531 . . . . . . . . . . . . 13  |-  ( ( P  e.  Prime  /\  ( N  e.  QQ  /\  N  =/=  0 ) )  ->  N  =/=  0 )
65ad3antrrr 492 . . . . . . . . . . . 12  |-  ( ( ( ( ( P  e.  Prime  /\  ( N  e.  QQ  /\  N  =/=  0 ) )  /\  x  e.  ZZ )  /\  y  e.  NN )  /\  N  =  ( x  /  y ) )  ->  N  =/=  0 )
71ad3antrrr 492 . . . . . . . . . . . . 13  |-  ( ( ( ( ( P  e.  Prime  /\  ( N  e.  QQ  /\  N  =/=  0 ) )  /\  x  e.  ZZ )  /\  y  e.  NN )  /\  N  =  ( x  /  y ) )  ->  N  e.  QQ )
8 0z 9385 . . . . . . . . . . . . . 14  |-  0  e.  ZZ
9 zq 9749 . . . . . . . . . . . . . 14  |-  ( 0  e.  ZZ  ->  0  e.  QQ )
108, 9mp1i 10 . . . . . . . . . . . . 13  |-  ( ( ( ( ( P  e.  Prime  /\  ( N  e.  QQ  /\  N  =/=  0 ) )  /\  x  e.  ZZ )  /\  y  e.  NN )  /\  N  =  ( x  /  y ) )  ->  0  e.  QQ )
11 qapne 9762 . . . . . . . . . . . . 13  |-  ( ( N  e.  QQ  /\  0  e.  QQ )  ->  ( N #  0  <->  N  =/=  0 ) )
127, 10, 11syl2anc 411 . . . . . . . . . . . 12  |-  ( ( ( ( ( P  e.  Prime  /\  ( N  e.  QQ  /\  N  =/=  0 ) )  /\  x  e.  ZZ )  /\  y  e.  NN )  /\  N  =  ( x  /  y ) )  ->  ( N #  0 
<->  N  =/=  0 ) )
136, 12mpbird 167 . . . . . . . . . . 11  |-  ( ( ( ( ( P  e.  Prime  /\  ( N  e.  QQ  /\  N  =/=  0 ) )  /\  x  e.  ZZ )  /\  y  e.  NN )  /\  N  =  ( x  /  y ) )  ->  N #  0
)
144, 13eqbrtrrd 4069 . . . . . . . . . 10  |-  ( ( ( ( ( P  e.  Prime  /\  ( N  e.  QQ  /\  N  =/=  0 ) )  /\  x  e.  ZZ )  /\  y  e.  NN )  /\  N  =  ( x  /  y ) )  ->  ( x  /  y ) #  0 )
15 simpllr 534 . . . . . . . . . . . 12  |-  ( ( ( ( ( P  e.  Prime  /\  ( N  e.  QQ  /\  N  =/=  0 ) )  /\  x  e.  ZZ )  /\  y  e.  NN )  /\  N  =  ( x  /  y ) )  ->  x  e.  ZZ )
1615zcnd 9498 . . . . . . . . . . 11  |-  ( ( ( ( ( P  e.  Prime  /\  ( N  e.  QQ  /\  N  =/=  0 ) )  /\  x  e.  ZZ )  /\  y  e.  NN )  /\  N  =  ( x  /  y ) )  ->  x  e.  CC )
17 nnz 9393 . . . . . . . . . . . . . 14  |-  ( y  e.  NN  ->  y  e.  ZZ )
1817adantl 277 . . . . . . . . . . . . 13  |-  ( ( ( ( P  e. 
Prime  /\  ( N  e.  QQ  /\  N  =/=  0 ) )  /\  x  e.  ZZ )  /\  y  e.  NN )  ->  y  e.  ZZ )
1918adantr 276 . . . . . . . . . . . 12  |-  ( ( ( ( ( P  e.  Prime  /\  ( N  e.  QQ  /\  N  =/=  0 ) )  /\  x  e.  ZZ )  /\  y  e.  NN )  /\  N  =  ( x  /  y ) )  ->  y  e.  ZZ )
2019zcnd 9498 . . . . . . . . . . 11  |-  ( ( ( ( ( P  e.  Prime  /\  ( N  e.  QQ  /\  N  =/=  0 ) )  /\  x  e.  ZZ )  /\  y  e.  NN )  /\  N  =  ( x  /  y ) )  ->  y  e.  CC )
21 simplr 528 . . . . . . . . . . . 12  |-  ( ( ( ( ( P  e.  Prime  /\  ( N  e.  QQ  /\  N  =/=  0 ) )  /\  x  e.  ZZ )  /\  y  e.  NN )  /\  N  =  ( x  /  y ) )  ->  y  e.  NN )
2221nnap0d 9084 . . . . . . . . . . 11  |-  ( ( ( ( ( P  e.  Prime  /\  ( N  e.  QQ  /\  N  =/=  0 ) )  /\  x  e.  ZZ )  /\  y  e.  NN )  /\  N  =  ( x  /  y ) )  ->  y #  0
)
2316, 20, 22divap0bd 8877 . . . . . . . . . 10  |-  ( ( ( ( ( P  e.  Prime  /\  ( N  e.  QQ  /\  N  =/=  0 ) )  /\  x  e.  ZZ )  /\  y  e.  NN )  /\  N  =  ( x  /  y ) )  ->  ( x #  0 
<->  ( x  /  y
) #  0 ) )
2414, 23mpbird 167 . . . . . . . . 9  |-  ( ( ( ( ( P  e.  Prime  /\  ( N  e.  QQ  /\  N  =/=  0 ) )  /\  x  e.  ZZ )  /\  y  e.  NN )  /\  N  =  ( x  /  y ) )  ->  x #  0
)
25 0zd 9386 . . . . . . . . . 10  |-  ( ( ( ( ( P  e.  Prime  /\  ( N  e.  QQ  /\  N  =/=  0 ) )  /\  x  e.  ZZ )  /\  y  e.  NN )  /\  N  =  ( x  /  y ) )  ->  0  e.  ZZ )
26 zapne 9449 . . . . . . . . . 10  |-  ( ( x  e.  ZZ  /\  0  e.  ZZ )  ->  ( x #  0  <->  x  =/=  0 ) )
2715, 25, 26syl2anc 411 . . . . . . . . 9  |-  ( ( ( ( ( P  e.  Prime  /\  ( N  e.  QQ  /\  N  =/=  0 ) )  /\  x  e.  ZZ )  /\  y  e.  NN )  /\  N  =  ( x  /  y ) )  ->  ( x #  0 
<->  x  =/=  0 ) )
2824, 27mpbid 147 . . . . . . . 8  |-  ( ( ( ( ( P  e.  Prime  /\  ( N  e.  QQ  /\  N  =/=  0 ) )  /\  x  e.  ZZ )  /\  y  e.  NN )  /\  N  =  ( x  /  y ) )  ->  x  =/=  0 )
2928ex 115 . . . . . . 7  |-  ( ( ( ( P  e. 
Prime  /\  ( N  e.  QQ  /\  N  =/=  0 ) )  /\  x  e.  ZZ )  /\  y  e.  NN )  ->  ( N  =  ( x  /  y
)  ->  x  =/=  0 ) )
3029adantrd 279 . . . . . . . 8  |-  ( ( ( ( P  e. 
Prime  /\  ( N  e.  QQ  /\  N  =/=  0 ) )  /\  x  e.  ZZ )  /\  y  e.  NN )  ->  ( ( N  =  ( x  / 
y )  /\  z  =  ( S  -  T ) )  ->  x  =/=  0 ) )
3130exlimdv 1842 . . . . . . 7  |-  ( ( ( ( P  e. 
Prime  /\  ( N  e.  QQ  /\  N  =/=  0 ) )  /\  x  e.  ZZ )  /\  y  e.  NN )  ->  ( E. z
( N  =  ( x  /  y )  /\  z  =  ( S  -  T ) )  ->  x  =/=  0 ) )
32 prmuz2 12486 . . . . . . . . . . . . . . 15  |-  ( P  e.  Prime  ->  P  e.  ( ZZ>= `  2 )
)
3332ad3antrrr 492 . . . . . . . . . . . . . 14  |-  ( ( ( ( P  e. 
Prime  /\  ( N  e.  QQ  /\  N  =/=  0 ) )  /\  x  e.  ZZ )  /\  y  e.  NN )  ->  P  e.  (
ZZ>= `  2 ) )
3433adantr 276 . . . . . . . . . . . . 13  |-  ( ( ( ( ( P  e.  Prime  /\  ( N  e.  QQ  /\  N  =/=  0 ) )  /\  x  e.  ZZ )  /\  y  e.  NN )  /\  x  =/=  0
)  ->  P  e.  ( ZZ>= `  2 )
)
35 simpllr 534 . . . . . . . . . . . . 13  |-  ( ( ( ( ( P  e.  Prime  /\  ( N  e.  QQ  /\  N  =/=  0 ) )  /\  x  e.  ZZ )  /\  y  e.  NN )  /\  x  =/=  0
)  ->  x  e.  ZZ )
36 simpr 110 . . . . . . . . . . . . 13  |-  ( ( ( ( ( P  e.  Prime  /\  ( N  e.  QQ  /\  N  =/=  0 ) )  /\  x  e.  ZZ )  /\  y  e.  NN )  /\  x  =/=  0
)  ->  x  =/=  0 )
37 eqid 2205 . . . . . . . . . . . . . . 15  |-  { n  e.  NN0  |  ( P ^ n )  ||  x }  =  {
n  e.  NN0  | 
( P ^ n
)  ||  x }
38 pcval.1 . . . . . . . . . . . . . . 15  |-  S  =  sup ( { n  e.  NN0  |  ( P ^ n )  ||  x } ,  RR ,  <  )
3937, 38pcprecl 12645 . . . . . . . . . . . . . 14  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  (
x  e.  ZZ  /\  x  =/=  0 ) )  ->  ( S  e. 
NN0  /\  ( P ^ S )  ||  x
) )
4039simpld 112 . . . . . . . . . . . . 13  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  (
x  e.  ZZ  /\  x  =/=  0 ) )  ->  S  e.  NN0 )
4134, 35, 36, 40syl12anc 1248 . . . . . . . . . . . 12  |-  ( ( ( ( ( P  e.  Prime  /\  ( N  e.  QQ  /\  N  =/=  0 ) )  /\  x  e.  ZZ )  /\  y  e.  NN )  /\  x  =/=  0
)  ->  S  e.  NN0 )
4241nn0zd 9495 . . . . . . . . . . 11  |-  ( ( ( ( ( P  e.  Prime  /\  ( N  e.  QQ  /\  N  =/=  0 ) )  /\  x  e.  ZZ )  /\  y  e.  NN )  /\  x  =/=  0
)  ->  S  e.  ZZ )
43 nnne0 9066 . . . . . . . . . . . . . . . 16  |-  ( y  e.  NN  ->  y  =/=  0 )
4443adantl 277 . . . . . . . . . . . . . . 15  |-  ( ( ( ( P  e. 
Prime  /\  ( N  e.  QQ  /\  N  =/=  0 ) )  /\  x  e.  ZZ )  /\  y  e.  NN )  ->  y  =/=  0
)
45 eqid 2205 . . . . . . . . . . . . . . . 16  |-  { n  e.  NN0  |  ( P ^ n )  ||  y }  =  {
n  e.  NN0  | 
( P ^ n
)  ||  y }
46 pcval.2 . . . . . . . . . . . . . . . 16  |-  T  =  sup ( { n  e.  NN0  |  ( P ^ n )  ||  y } ,  RR ,  <  )
4745, 46pcprecl 12645 . . . . . . . . . . . . . . 15  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  (
y  e.  ZZ  /\  y  =/=  0 ) )  ->  ( T  e. 
NN0  /\  ( P ^ T )  ||  y
) )
4833, 18, 44, 47syl12anc 1248 . . . . . . . . . . . . . 14  |-  ( ( ( ( P  e. 
Prime  /\  ( N  e.  QQ  /\  N  =/=  0 ) )  /\  x  e.  ZZ )  /\  y  e.  NN )  ->  ( T  e. 
NN0  /\  ( P ^ T )  ||  y
) )
4948simpld 112 . . . . . . . . . . . . 13  |-  ( ( ( ( P  e. 
Prime  /\  ( N  e.  QQ  /\  N  =/=  0 ) )  /\  x  e.  ZZ )  /\  y  e.  NN )  ->  T  e.  NN0 )
5049adantr 276 . . . . . . . . . . . 12  |-  ( ( ( ( ( P  e.  Prime  /\  ( N  e.  QQ  /\  N  =/=  0 ) )  /\  x  e.  ZZ )  /\  y  e.  NN )  /\  x  =/=  0
)  ->  T  e.  NN0 )
5150nn0zd 9495 . . . . . . . . . . 11  |-  ( ( ( ( ( P  e.  Prime  /\  ( N  e.  QQ  /\  N  =/=  0 ) )  /\  x  e.  ZZ )  /\  y  e.  NN )  /\  x  =/=  0
)  ->  T  e.  ZZ )
5242, 51zsubcld 9502 . . . . . . . . . 10  |-  ( ( ( ( ( P  e.  Prime  /\  ( N  e.  QQ  /\  N  =/=  0 ) )  /\  x  e.  ZZ )  /\  y  e.  NN )  /\  x  =/=  0
)  ->  ( S  -  T )  e.  ZZ )
53 biidd 172 . . . . . . . . . . 11  |-  ( z  =  ( S  -  T )  ->  ( N  =  ( x  /  y )  <->  N  =  ( x  /  y
) ) )
5453ceqsexgv 2902 . . . . . . . . . 10  |-  ( ( S  -  T )  e.  ZZ  ->  ( E. z ( z  =  ( S  -  T
)  /\  N  =  ( x  /  y
) )  <->  N  =  ( x  /  y
) ) )
5552, 54syl 14 . . . . . . . . 9  |-  ( ( ( ( ( P  e.  Prime  /\  ( N  e.  QQ  /\  N  =/=  0 ) )  /\  x  e.  ZZ )  /\  y  e.  NN )  /\  x  =/=  0
)  ->  ( E. z ( z  =  ( S  -  T
)  /\  N  =  ( x  /  y
) )  <->  N  =  ( x  /  y
) ) )
56 exancom 1631 . . . . . . . . 9  |-  ( E. z ( z  =  ( S  -  T
)  /\  N  =  ( x  /  y
) )  <->  E. z
( N  =  ( x  /  y )  /\  z  =  ( S  -  T ) ) )
5755, 56bitr3di 195 . . . . . . . 8  |-  ( ( ( ( ( P  e.  Prime  /\  ( N  e.  QQ  /\  N  =/=  0 ) )  /\  x  e.  ZZ )  /\  y  e.  NN )  /\  x  =/=  0
)  ->  ( N  =  ( x  / 
y )  <->  E. z
( N  =  ( x  /  y )  /\  z  =  ( S  -  T ) ) ) )
5857ex 115 . . . . . . 7  |-  ( ( ( ( P  e. 
Prime  /\  ( N  e.  QQ  /\  N  =/=  0 ) )  /\  x  e.  ZZ )  /\  y  e.  NN )  ->  ( x  =/=  0  ->  ( N  =  ( x  / 
y )  <->  E. z
( N  =  ( x  /  y )  /\  z  =  ( S  -  T ) ) ) ) )
5929, 31, 58pm5.21ndd 707 . . . . . 6  |-  ( ( ( ( P  e. 
Prime  /\  ( N  e.  QQ  /\  N  =/=  0 ) )  /\  x  e.  ZZ )  /\  y  e.  NN )  ->  ( N  =  ( x  /  y
)  <->  E. z ( N  =  ( x  / 
y )  /\  z  =  ( S  -  T ) ) ) )
6059rexbidva 2503 . . . . 5  |-  ( ( ( P  e.  Prime  /\  ( N  e.  QQ  /\  N  =/=  0 ) )  /\  x  e.  ZZ )  ->  ( E. y  e.  NN  N  =  ( x  /  y )  <->  E. y  e.  NN  E. z ( N  =  ( x  /  y )  /\  z  =  ( S  -  T ) ) ) )
6160rexbidva 2503 . . . 4  |-  ( ( P  e.  Prime  /\  ( N  e.  QQ  /\  N  =/=  0 ) )  -> 
( E. x  e.  ZZ  E. y  e.  NN  N  =  ( x  /  y )  <->  E. x  e.  ZZ  E. y  e.  NN  E. z ( N  =  ( x  /  y
)  /\  z  =  ( S  -  T
) ) ) )
62 rexcom4 2795 . . . . . 6  |-  ( E. y  e.  NN  E. z ( N  =  ( x  /  y
)  /\  z  =  ( S  -  T
) )  <->  E. z E. y  e.  NN  ( N  =  (
x  /  y )  /\  z  =  ( S  -  T ) ) )
6362rexbii 2513 . . . . 5  |-  ( E. x  e.  ZZ  E. y  e.  NN  E. z
( N  =  ( x  /  y )  /\  z  =  ( S  -  T ) )  <->  E. x  e.  ZZ  E. z E. y  e.  NN  ( N  =  ( x  /  y
)  /\  z  =  ( S  -  T
) ) )
64 rexcom4 2795 . . . . 5  |-  ( E. x  e.  ZZ  E. z E. y  e.  NN  ( N  =  (
x  /  y )  /\  z  =  ( S  -  T ) )  <->  E. z E. x  e.  ZZ  E. y  e.  NN  ( N  =  ( x  /  y
)  /\  z  =  ( S  -  T
) ) )
6563, 64bitri 184 . . . 4  |-  ( E. x  e.  ZZ  E. y  e.  NN  E. z
( N  =  ( x  /  y )  /\  z  =  ( S  -  T ) )  <->  E. z E. x  e.  ZZ  E. y  e.  NN  ( N  =  ( x  /  y
)  /\  z  =  ( S  -  T
) ) )
6661, 65bitrdi 196 . . 3  |-  ( ( P  e.  Prime  /\  ( N  e.  QQ  /\  N  =/=  0 ) )  -> 
( E. x  e.  ZZ  E. y  e.  NN  N  =  ( x  /  y )  <->  E. z E. x  e.  ZZ  E. y  e.  NN  ( N  =  ( x  /  y
)  /\  z  =  ( S  -  T
) ) ) )
673, 66mpbid 147 . 2  |-  ( ( P  e.  Prime  /\  ( N  e.  QQ  /\  N  =/=  0 ) )  ->  E. z E. x  e.  ZZ  E. y  e.  NN  ( N  =  ( x  /  y
)  /\  z  =  ( S  -  T
) ) )
68 eqid 2205 . . . . . . . . . . 11  |-  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  s } ,  RR ,  <  )  =  sup ( { n  e.  NN0  |  ( P ^ n )  ||  s } ,  RR ,  <  )
69 eqid 2205 . . . . . . . . . . 11  |-  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  t } ,  RR ,  <  )  =  sup ( { n  e.  NN0  |  ( P ^ n )  ||  t } ,  RR ,  <  )
70 simp11l 1111 . . . . . . . . . . 11  |-  ( ( ( ( P  e. 
Prime  /\  N  =/=  0
)  /\  ( x  e.  ZZ  /\  y  e.  NN )  /\  ( N  =  ( x  /  y )  /\  z  =  ( S  -  T ) ) )  /\  ( s  e.  ZZ  /\  t  e.  NN )  /\  ( N  =  ( s  /  t )  /\  w  =  ( sup ( { n  e.  NN0  |  ( P ^ n
)  ||  s } ,  RR ,  <  )  -  sup ( { n  e.  NN0  |  ( P ^ n )  ||  t } ,  RR ,  <  ) ) ) )  ->  P  e.  Prime )
71 simp11r 1112 . . . . . . . . . . 11  |-  ( ( ( ( P  e. 
Prime  /\  N  =/=  0
)  /\  ( x  e.  ZZ  /\  y  e.  NN )  /\  ( N  =  ( x  /  y )  /\  z  =  ( S  -  T ) ) )  /\  ( s  e.  ZZ  /\  t  e.  NN )  /\  ( N  =  ( s  /  t )  /\  w  =  ( sup ( { n  e.  NN0  |  ( P ^ n
)  ||  s } ,  RR ,  <  )  -  sup ( { n  e.  NN0  |  ( P ^ n )  ||  t } ,  RR ,  <  ) ) ) )  ->  N  =/=  0
)
72 simp12 1031 . . . . . . . . . . 11  |-  ( ( ( ( P  e. 
Prime  /\  N  =/=  0
)  /\  ( x  e.  ZZ  /\  y  e.  NN )  /\  ( N  =  ( x  /  y )  /\  z  =  ( S  -  T ) ) )  /\  ( s  e.  ZZ  /\  t  e.  NN )  /\  ( N  =  ( s  /  t )  /\  w  =  ( sup ( { n  e.  NN0  |  ( P ^ n
)  ||  s } ,  RR ,  <  )  -  sup ( { n  e.  NN0  |  ( P ^ n )  ||  t } ,  RR ,  <  ) ) ) )  ->  ( x  e.  ZZ  /\  y  e.  NN ) )
73 simp13l 1115 . . . . . . . . . . 11  |-  ( ( ( ( P  e. 
Prime  /\  N  =/=  0
)  /\  ( x  e.  ZZ  /\  y  e.  NN )  /\  ( N  =  ( x  /  y )  /\  z  =  ( S  -  T ) ) )  /\  ( s  e.  ZZ  /\  t  e.  NN )  /\  ( N  =  ( s  /  t )  /\  w  =  ( sup ( { n  e.  NN0  |  ( P ^ n
)  ||  s } ,  RR ,  <  )  -  sup ( { n  e.  NN0  |  ( P ^ n )  ||  t } ,  RR ,  <  ) ) ) )  ->  N  =  ( x  /  y ) )
74 simp2 1001 . . . . . . . . . . 11  |-  ( ( ( ( P  e. 
Prime  /\  N  =/=  0
)  /\  ( x  e.  ZZ  /\  y  e.  NN )  /\  ( N  =  ( x  /  y )  /\  z  =  ( S  -  T ) ) )  /\  ( s  e.  ZZ  /\  t  e.  NN )  /\  ( N  =  ( s  /  t )  /\  w  =  ( sup ( { n  e.  NN0  |  ( P ^ n
)  ||  s } ,  RR ,  <  )  -  sup ( { n  e.  NN0  |  ( P ^ n )  ||  t } ,  RR ,  <  ) ) ) )  ->  ( s  e.  ZZ  /\  t  e.  NN ) )
75 simp3l 1028 . . . . . . . . . . 11  |-  ( ( ( ( P  e. 
Prime  /\  N  =/=  0
)  /\  ( x  e.  ZZ  /\  y  e.  NN )  /\  ( N  =  ( x  /  y )  /\  z  =  ( S  -  T ) ) )  /\  ( s  e.  ZZ  /\  t  e.  NN )  /\  ( N  =  ( s  /  t )  /\  w  =  ( sup ( { n  e.  NN0  |  ( P ^ n
)  ||  s } ,  RR ,  <  )  -  sup ( { n  e.  NN0  |  ( P ^ n )  ||  t } ,  RR ,  <  ) ) ) )  ->  N  =  ( s  /  t ) )
7638, 46, 68, 69, 70, 71, 72, 73, 74, 75pceulem 12650 . . . . . . . . . 10  |-  ( ( ( ( P  e. 
Prime  /\  N  =/=  0
)  /\  ( x  e.  ZZ  /\  y  e.  NN )  /\  ( N  =  ( x  /  y )  /\  z  =  ( S  -  T ) ) )  /\  ( s  e.  ZZ  /\  t  e.  NN )  /\  ( N  =  ( s  /  t )  /\  w  =  ( sup ( { n  e.  NN0  |  ( P ^ n
)  ||  s } ,  RR ,  <  )  -  sup ( { n  e.  NN0  |  ( P ^ n )  ||  t } ,  RR ,  <  ) ) ) )  ->  ( S  -  T )  =  ( sup ( { n  e.  NN0  |  ( P ^ n )  ||  s } ,  RR ,  <  )  -  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  t } ,  RR ,  <  )
) )
77 simp13r 1116 . . . . . . . . . 10  |-  ( ( ( ( P  e. 
Prime  /\  N  =/=  0
)  /\  ( x  e.  ZZ  /\  y  e.  NN )  /\  ( N  =  ( x  /  y )  /\  z  =  ( S  -  T ) ) )  /\  ( s  e.  ZZ  /\  t  e.  NN )  /\  ( N  =  ( s  /  t )  /\  w  =  ( sup ( { n  e.  NN0  |  ( P ^ n
)  ||  s } ,  RR ,  <  )  -  sup ( { n  e.  NN0  |  ( P ^ n )  ||  t } ,  RR ,  <  ) ) ) )  ->  z  =  ( S  -  T ) )
78 simp3r 1029 . . . . . . . . . 10  |-  ( ( ( ( P  e. 
Prime  /\  N  =/=  0
)  /\  ( x  e.  ZZ  /\  y  e.  NN )  /\  ( N  =  ( x  /  y )  /\  z  =  ( S  -  T ) ) )  /\  ( s  e.  ZZ  /\  t  e.  NN )  /\  ( N  =  ( s  /  t )  /\  w  =  ( sup ( { n  e.  NN0  |  ( P ^ n
)  ||  s } ,  RR ,  <  )  -  sup ( { n  e.  NN0  |  ( P ^ n )  ||  t } ,  RR ,  <  ) ) ) )  ->  w  =  ( sup ( { n  e.  NN0  |  ( P ^ n )  ||  s } ,  RR ,  <  )  -  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  t } ,  RR ,  <  )
) )
7976, 77, 783eqtr4d 2248 . . . . . . . . 9  |-  ( ( ( ( P  e. 
Prime  /\  N  =/=  0
)  /\  ( x  e.  ZZ  /\  y  e.  NN )  /\  ( N  =  ( x  /  y )  /\  z  =  ( S  -  T ) ) )  /\  ( s  e.  ZZ  /\  t  e.  NN )  /\  ( N  =  ( s  /  t )  /\  w  =  ( sup ( { n  e.  NN0  |  ( P ^ n
)  ||  s } ,  RR ,  <  )  -  sup ( { n  e.  NN0  |  ( P ^ n )  ||  t } ,  RR ,  <  ) ) ) )  ->  z  =  w )
80793exp 1205 . . . . . . . 8  |-  ( ( ( P  e.  Prime  /\  N  =/=  0 )  /\  ( x  e.  ZZ  /\  y  e.  NN )  /\  ( N  =  ( x  /  y )  /\  z  =  ( S  -  T ) ) )  ->  ( ( s  e.  ZZ  /\  t  e.  NN )  ->  (
( N  =  ( s  /  t )  /\  w  =  ( sup ( { n  e.  NN0  |  ( P ^ n )  ||  s } ,  RR ,  <  )  -  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  t } ,  RR ,  <  )
) )  ->  z  =  w ) ) )
8180rexlimdvv 2630 . . . . . . 7  |-  ( ( ( P  e.  Prime  /\  N  =/=  0 )  /\  ( x  e.  ZZ  /\  y  e.  NN )  /\  ( N  =  ( x  /  y )  /\  z  =  ( S  -  T ) ) )  ->  ( E. s  e.  ZZ  E. t  e.  NN  ( N  =  ( s  /  t
)  /\  w  =  ( sup ( { n  e.  NN0  |  ( P ^ n )  ||  s } ,  RR ,  <  )  -  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  t } ,  RR ,  <  )
) )  ->  z  =  w ) )
82813exp 1205 . . . . . 6  |-  ( ( P  e.  Prime  /\  N  =/=  0 )  ->  (
( x  e.  ZZ  /\  y  e.  NN )  ->  ( ( N  =  ( x  / 
y )  /\  z  =  ( S  -  T ) )  -> 
( E. s  e.  ZZ  E. t  e.  NN  ( N  =  ( s  /  t
)  /\  w  =  ( sup ( { n  e.  NN0  |  ( P ^ n )  ||  s } ,  RR ,  <  )  -  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  t } ,  RR ,  <  )
) )  ->  z  =  w ) ) ) )
8382adantrl 478 . . . . 5  |-  ( ( P  e.  Prime  /\  ( N  e.  QQ  /\  N  =/=  0 ) )  -> 
( ( x  e.  ZZ  /\  y  e.  NN )  ->  (
( N  =  ( x  /  y )  /\  z  =  ( S  -  T ) )  ->  ( E. s  e.  ZZ  E. t  e.  NN  ( N  =  ( s  /  t
)  /\  w  =  ( sup ( { n  e.  NN0  |  ( P ^ n )  ||  s } ,  RR ,  <  )  -  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  t } ,  RR ,  <  )
) )  ->  z  =  w ) ) ) )
8483rexlimdvv 2630 . . . 4  |-  ( ( P  e.  Prime  /\  ( N  e.  QQ  /\  N  =/=  0 ) )  -> 
( E. x  e.  ZZ  E. y  e.  NN  ( N  =  ( x  /  y
)  /\  z  =  ( S  -  T
) )  ->  ( E. s  e.  ZZ  E. t  e.  NN  ( N  =  ( s  /  t )  /\  w  =  ( sup ( { n  e.  NN0  |  ( P ^ n
)  ||  s } ,  RR ,  <  )  -  sup ( { n  e.  NN0  |  ( P ^ n )  ||  t } ,  RR ,  <  ) ) )  -> 
z  =  w ) ) )
8584impd 254 . . 3  |-  ( ( P  e.  Prime  /\  ( N  e.  QQ  /\  N  =/=  0 ) )  -> 
( ( E. x  e.  ZZ  E. y  e.  NN  ( N  =  ( x  /  y
)  /\  z  =  ( S  -  T
) )  /\  E. s  e.  ZZ  E. t  e.  NN  ( N  =  ( s  /  t
)  /\  w  =  ( sup ( { n  e.  NN0  |  ( P ^ n )  ||  s } ,  RR ,  <  )  -  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  t } ,  RR ,  <  )
) ) )  -> 
z  =  w ) )
8685alrimivv 1898 . 2  |-  ( ( P  e.  Prime  /\  ( N  e.  QQ  /\  N  =/=  0 ) )  ->  A. z A. w ( ( E. x  e.  ZZ  E. y  e.  NN  ( N  =  ( x  /  y
)  /\  z  =  ( S  -  T
) )  /\  E. s  e.  ZZ  E. t  e.  NN  ( N  =  ( s  /  t
)  /\  w  =  ( sup ( { n  e.  NN0  |  ( P ^ n )  ||  s } ,  RR ,  <  )  -  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  t } ,  RR ,  <  )
) ) )  -> 
z  =  w ) )
87 eqeq1 2212 . . . . . 6  |-  ( z  =  w  ->  (
z  =  ( S  -  T )  <->  w  =  ( S  -  T
) ) )
8887anbi2d 464 . . . . 5  |-  ( z  =  w  ->  (
( N  =  ( x  /  y )  /\  z  =  ( S  -  T ) )  <->  ( N  =  ( x  /  y
)  /\  w  =  ( S  -  T
) ) ) )
89882rexbidv 2531 . . . 4  |-  ( z  =  w  ->  ( E. x  e.  ZZ  E. y  e.  NN  ( N  =  ( x  /  y )  /\  z  =  ( S  -  T ) )  <->  E. x  e.  ZZ  E. y  e.  NN  ( N  =  ( x  /  y
)  /\  w  =  ( S  -  T
) ) ) )
90 oveq1 5953 . . . . . . . . 9  |-  ( x  =  s  ->  (
x  /  y )  =  ( s  / 
y ) )
9190eqeq2d 2217 . . . . . . . 8  |-  ( x  =  s  ->  ( N  =  ( x  /  y )  <->  N  =  ( s  /  y
) ) )
92 breq2 4049 . . . . . . . . . . . . 13  |-  ( x  =  s  ->  (
( P ^ n
)  ||  x  <->  ( P ^ n )  ||  s ) )
9392rabbidv 2761 . . . . . . . . . . . 12  |-  ( x  =  s  ->  { n  e.  NN0  |  ( P ^ n )  ||  x }  =  {
n  e.  NN0  | 
( P ^ n
)  ||  s }
)
9493supeq1d 7091 . . . . . . . . . . 11  |-  ( x  =  s  ->  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  x } ,  RR ,  <  )  =  sup ( { n  e.  NN0  |  ( P ^ n )  ||  s } ,  RR ,  <  ) )
9538, 94eqtrid 2250 . . . . . . . . . 10  |-  ( x  =  s  ->  S  =  sup ( { n  e.  NN0  |  ( P ^ n )  ||  s } ,  RR ,  <  ) )
9695oveq1d 5961 . . . . . . . . 9  |-  ( x  =  s  ->  ( S  -  T )  =  ( sup ( { n  e.  NN0  |  ( P ^ n
)  ||  s } ,  RR ,  <  )  -  T ) )
9796eqeq2d 2217 . . . . . . . 8  |-  ( x  =  s  ->  (
w  =  ( S  -  T )  <->  w  =  ( sup ( { n  e.  NN0  |  ( P ^ n )  ||  s } ,  RR ,  <  )  -  T ) ) )
9891, 97anbi12d 473 . . . . . . 7  |-  ( x  =  s  ->  (
( N  =  ( x  /  y )  /\  w  =  ( S  -  T ) )  <->  ( N  =  ( s  /  y
)  /\  w  =  ( sup ( { n  e.  NN0  |  ( P ^ n )  ||  s } ,  RR ,  <  )  -  T ) ) ) )
9998rexbidv 2507 . . . . . 6  |-  ( x  =  s  ->  ( E. y  e.  NN  ( N  =  (
x  /  y )  /\  w  =  ( S  -  T ) )  <->  E. y  e.  NN  ( N  =  (
s  /  y )  /\  w  =  ( sup ( { n  e.  NN0  |  ( P ^ n )  ||  s } ,  RR ,  <  )  -  T ) ) ) )
100 oveq2 5954 . . . . . . . . 9  |-  ( y  =  t  ->  (
s  /  y )  =  ( s  / 
t ) )
101100eqeq2d 2217 . . . . . . . 8  |-  ( y  =  t  ->  ( N  =  ( s  /  y )  <->  N  =  ( s  /  t
) ) )
102 breq2 4049 . . . . . . . . . . . . 13  |-  ( y  =  t  ->  (
( P ^ n
)  ||  y  <->  ( P ^ n )  ||  t ) )
103102rabbidv 2761 . . . . . . . . . . . 12  |-  ( y  =  t  ->  { n  e.  NN0  |  ( P ^ n )  ||  y }  =  {
n  e.  NN0  | 
( P ^ n
)  ||  t }
)
104103supeq1d 7091 . . . . . . . . . . 11  |-  ( y  =  t  ->  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  y } ,  RR ,  <  )  =  sup ( { n  e.  NN0  |  ( P ^ n )  ||  t } ,  RR ,  <  ) )
10546, 104eqtrid 2250 . . . . . . . . . 10  |-  ( y  =  t  ->  T  =  sup ( { n  e.  NN0  |  ( P ^ n )  ||  t } ,  RR ,  <  ) )
106105oveq2d 5962 . . . . . . . . 9  |-  ( y  =  t  ->  ( sup ( { n  e. 
NN0  |  ( P ^ n )  ||  s } ,  RR ,  <  )  -  T )  =  ( sup ( { n  e.  NN0  |  ( P ^ n
)  ||  s } ,  RR ,  <  )  -  sup ( { n  e.  NN0  |  ( P ^ n )  ||  t } ,  RR ,  <  ) ) )
107106eqeq2d 2217 . . . . . . . 8  |-  ( y  =  t  ->  (
w  =  ( sup ( { n  e. 
NN0  |  ( P ^ n )  ||  s } ,  RR ,  <  )  -  T )  <-> 
w  =  ( sup ( { n  e. 
NN0  |  ( P ^ n )  ||  s } ,  RR ,  <  )  -  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  t } ,  RR ,  <  )
) ) )
108101, 107anbi12d 473 . . . . . . 7  |-  ( y  =  t  ->  (
( N  =  ( s  /  y )  /\  w  =  ( sup ( { n  e.  NN0  |  ( P ^ n )  ||  s } ,  RR ,  <  )  -  T ) )  <->  ( N  =  ( s  /  t
)  /\  w  =  ( sup ( { n  e.  NN0  |  ( P ^ n )  ||  s } ,  RR ,  <  )  -  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  t } ,  RR ,  <  )
) ) ) )
109108cbvrexvw 2743 . . . . . 6  |-  ( E. y  e.  NN  ( N  =  ( s  /  y )  /\  w  =  ( sup ( { n  e.  NN0  |  ( P ^ n
)  ||  s } ,  RR ,  <  )  -  T ) )  <->  E. t  e.  NN  ( N  =  ( s  /  t
)  /\  w  =  ( sup ( { n  e.  NN0  |  ( P ^ n )  ||  s } ,  RR ,  <  )  -  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  t } ,  RR ,  <  )
) ) )
11099, 109bitrdi 196 . . . . 5  |-  ( x  =  s  ->  ( E. y  e.  NN  ( N  =  (
x  /  y )  /\  w  =  ( S  -  T ) )  <->  E. t  e.  NN  ( N  =  (
s  /  t )  /\  w  =  ( sup ( { n  e.  NN0  |  ( P ^ n )  ||  s } ,  RR ,  <  )  -  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  t } ,  RR ,  <  )
) ) ) )
111110cbvrexvw 2743 . . . 4  |-  ( E. x  e.  ZZ  E. y  e.  NN  ( N  =  ( x  /  y )  /\  w  =  ( S  -  T ) )  <->  E. s  e.  ZZ  E. t  e.  NN  ( N  =  ( s  /  t
)  /\  w  =  ( sup ( { n  e.  NN0  |  ( P ^ n )  ||  s } ,  RR ,  <  )  -  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  t } ,  RR ,  <  )
) ) )
11289, 111bitrdi 196 . . 3  |-  ( z  =  w  ->  ( E. x  e.  ZZ  E. y  e.  NN  ( N  =  ( x  /  y )  /\  z  =  ( S  -  T ) )  <->  E. s  e.  ZZ  E. t  e.  NN  ( N  =  ( s  /  t
)  /\  w  =  ( sup ( { n  e.  NN0  |  ( P ^ n )  ||  s } ,  RR ,  <  )  -  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  t } ,  RR ,  <  )
) ) ) )
113112eu4 2116 . 2  |-  ( E! z E. x  e.  ZZ  E. y  e.  NN  ( N  =  ( x  /  y
)  /\  z  =  ( S  -  T
) )  <->  ( E. z E. x  e.  ZZ  E. y  e.  NN  ( N  =  ( x  /  y )  /\  z  =  ( S  -  T ) )  /\  A. z A. w ( ( E. x  e.  ZZ  E. y  e.  NN  ( N  =  ( x  /  y
)  /\  z  =  ( S  -  T
) )  /\  E. s  e.  ZZ  E. t  e.  NN  ( N  =  ( s  /  t
)  /\  w  =  ( sup ( { n  e.  NN0  |  ( P ^ n )  ||  s } ,  RR ,  <  )  -  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  t } ,  RR ,  <  )
) ) )  -> 
z  =  w ) ) )
11467, 86, 113sylanbrc 417 1  |-  ( ( P  e.  Prime  /\  ( N  e.  QQ  /\  N  =/=  0 ) )  ->  E! z E. x  e.  ZZ  E. y  e.  NN  ( N  =  ( x  /  y
)  /\  z  =  ( S  -  T
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 981   A.wal 1371    = wceq 1373   E.wex 1515   E!weu 2054    e. wcel 2176    =/= wne 2376   E.wrex 2485   {crab 2488   class class class wbr 4045   ` cfv 5272  (class class class)co 5946   supcsup 7086   RRcr 7926   0cc0 7927    < clt 8109    - cmin 8245   # cap 8656    / cdiv 8747   NNcn 9038   2c2 9089   NN0cn0 9297   ZZcz 9374   ZZ>=cuz 9650   QQcq 9742   ^cexp 10685    || cdvds 12131   Primecprime 12462
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4160  ax-sep 4163  ax-nul 4171  ax-pow 4219  ax-pr 4254  ax-un 4481  ax-setind 4586  ax-iinf 4637  ax-cnex 8018  ax-resscn 8019  ax-1cn 8020  ax-1re 8021  ax-icn 8022  ax-addcl 8023  ax-addrcl 8024  ax-mulcl 8025  ax-mulrcl 8026  ax-addcom 8027  ax-mulcom 8028  ax-addass 8029  ax-mulass 8030  ax-distr 8031  ax-i2m1 8032  ax-0lt1 8033  ax-1rid 8034  ax-0id 8035  ax-rnegex 8036  ax-precex 8037  ax-cnre 8038  ax-pre-ltirr 8039  ax-pre-ltwlin 8040  ax-pre-lttrn 8041  ax-pre-apti 8042  ax-pre-ltadd 8043  ax-pre-mulgt0 8044  ax-pre-mulext 8045  ax-arch 8046  ax-caucvg 8047
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-if 3572  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4046  df-opab 4107  df-mpt 4108  df-tr 4144  df-id 4341  df-po 4344  df-iso 4345  df-iord 4414  df-on 4416  df-ilim 4417  df-suc 4419  df-iom 4640  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-rn 4687  df-res 4688  df-ima 4689  df-iota 5233  df-fun 5274  df-fn 5275  df-f 5276  df-f1 5277  df-fo 5278  df-f1o 5279  df-fv 5280  df-isom 5281  df-riota 5901  df-ov 5949  df-oprab 5950  df-mpo 5951  df-1st 6228  df-2nd 6229  df-recs 6393  df-frec 6479  df-1o 6504  df-2o 6505  df-er 6622  df-en 6830  df-sup 7088  df-inf 7089  df-pnf 8111  df-mnf 8112  df-xr 8113  df-ltxr 8114  df-le 8115  df-sub 8247  df-neg 8248  df-reap 8650  df-ap 8657  df-div 8748  df-inn 9039  df-2 9097  df-3 9098  df-4 9099  df-n0 9298  df-z 9375  df-uz 9651  df-q 9743  df-rp 9778  df-fz 10133  df-fzo 10267  df-fl 10415  df-mod 10470  df-seqfrec 10595  df-exp 10686  df-cj 11186  df-re 11187  df-im 11188  df-rsqrt 11342  df-abs 11343  df-dvds 12132  df-gcd 12308  df-prm 12463
This theorem is referenced by:  pcval  12652  pczpre  12653  pcdiv  12658
  Copyright terms: Public domain W3C validator