ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pceu Unicode version

Theorem pceu 12433
Description: Uniqueness for the prime power function. (Contributed by Mario Carneiro, 23-Feb-2014.)
Hypotheses
Ref Expression
pcval.1  |-  S  =  sup ( { n  e.  NN0  |  ( P ^ n )  ||  x } ,  RR ,  <  )
pcval.2  |-  T  =  sup ( { n  e.  NN0  |  ( P ^ n )  ||  y } ,  RR ,  <  )
Assertion
Ref Expression
pceu  |-  ( ( P  e.  Prime  /\  ( N  e.  QQ  /\  N  =/=  0 ) )  ->  E! z E. x  e.  ZZ  E. y  e.  NN  ( N  =  ( x  /  y
)  /\  z  =  ( S  -  T
) ) )
Distinct variable groups:    x, n, y, z, N    P, n, x, y, z    z, S   
z, T
Allowed substitution hints:    S( x, y, n)    T( x, y, n)

Proof of Theorem pceu
Dummy variables  s  t  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simprl 529 . . . 4  |-  ( ( P  e.  Prime  /\  ( N  e.  QQ  /\  N  =/=  0 ) )  ->  N  e.  QQ )
2 elq 9687 . . . 4  |-  ( N  e.  QQ  <->  E. x  e.  ZZ  E. y  e.  NN  N  =  ( x  /  y ) )
31, 2sylib 122 . . 3  |-  ( ( P  e.  Prime  /\  ( N  e.  QQ  /\  N  =/=  0 ) )  ->  E. x  e.  ZZ  E. y  e.  NN  N  =  ( x  / 
y ) )
4 simpr 110 . . . . . . . . . . 11  |-  ( ( ( ( ( P  e.  Prime  /\  ( N  e.  QQ  /\  N  =/=  0 ) )  /\  x  e.  ZZ )  /\  y  e.  NN )  /\  N  =  ( x  /  y ) )  ->  N  =  ( x  /  y
) )
5 simprr 531 . . . . . . . . . . . . 13  |-  ( ( P  e.  Prime  /\  ( N  e.  QQ  /\  N  =/=  0 ) )  ->  N  =/=  0 )
65ad3antrrr 492 . . . . . . . . . . . 12  |-  ( ( ( ( ( P  e.  Prime  /\  ( N  e.  QQ  /\  N  =/=  0 ) )  /\  x  e.  ZZ )  /\  y  e.  NN )  /\  N  =  ( x  /  y ) )  ->  N  =/=  0 )
71ad3antrrr 492 . . . . . . . . . . . . 13  |-  ( ( ( ( ( P  e.  Prime  /\  ( N  e.  QQ  /\  N  =/=  0 ) )  /\  x  e.  ZZ )  /\  y  e.  NN )  /\  N  =  ( x  /  y ) )  ->  N  e.  QQ )
8 0z 9328 . . . . . . . . . . . . . 14  |-  0  e.  ZZ
9 zq 9691 . . . . . . . . . . . . . 14  |-  ( 0  e.  ZZ  ->  0  e.  QQ )
108, 9mp1i 10 . . . . . . . . . . . . 13  |-  ( ( ( ( ( P  e.  Prime  /\  ( N  e.  QQ  /\  N  =/=  0 ) )  /\  x  e.  ZZ )  /\  y  e.  NN )  /\  N  =  ( x  /  y ) )  ->  0  e.  QQ )
11 qapne 9704 . . . . . . . . . . . . 13  |-  ( ( N  e.  QQ  /\  0  e.  QQ )  ->  ( N #  0  <->  N  =/=  0 ) )
127, 10, 11syl2anc 411 . . . . . . . . . . . 12  |-  ( ( ( ( ( P  e.  Prime  /\  ( N  e.  QQ  /\  N  =/=  0 ) )  /\  x  e.  ZZ )  /\  y  e.  NN )  /\  N  =  ( x  /  y ) )  ->  ( N #  0 
<->  N  =/=  0 ) )
136, 12mpbird 167 . . . . . . . . . . 11  |-  ( ( ( ( ( P  e.  Prime  /\  ( N  e.  QQ  /\  N  =/=  0 ) )  /\  x  e.  ZZ )  /\  y  e.  NN )  /\  N  =  ( x  /  y ) )  ->  N #  0
)
144, 13eqbrtrrd 4053 . . . . . . . . . 10  |-  ( ( ( ( ( P  e.  Prime  /\  ( N  e.  QQ  /\  N  =/=  0 ) )  /\  x  e.  ZZ )  /\  y  e.  NN )  /\  N  =  ( x  /  y ) )  ->  ( x  /  y ) #  0 )
15 simpllr 534 . . . . . . . . . . . 12  |-  ( ( ( ( ( P  e.  Prime  /\  ( N  e.  QQ  /\  N  =/=  0 ) )  /\  x  e.  ZZ )  /\  y  e.  NN )  /\  N  =  ( x  /  y ) )  ->  x  e.  ZZ )
1615zcnd 9440 . . . . . . . . . . 11  |-  ( ( ( ( ( P  e.  Prime  /\  ( N  e.  QQ  /\  N  =/=  0 ) )  /\  x  e.  ZZ )  /\  y  e.  NN )  /\  N  =  ( x  /  y ) )  ->  x  e.  CC )
17 nnz 9336 . . . . . . . . . . . . . 14  |-  ( y  e.  NN  ->  y  e.  ZZ )
1817adantl 277 . . . . . . . . . . . . 13  |-  ( ( ( ( P  e. 
Prime  /\  ( N  e.  QQ  /\  N  =/=  0 ) )  /\  x  e.  ZZ )  /\  y  e.  NN )  ->  y  e.  ZZ )
1918adantr 276 . . . . . . . . . . . 12  |-  ( ( ( ( ( P  e.  Prime  /\  ( N  e.  QQ  /\  N  =/=  0 ) )  /\  x  e.  ZZ )  /\  y  e.  NN )  /\  N  =  ( x  /  y ) )  ->  y  e.  ZZ )
2019zcnd 9440 . . . . . . . . . . 11  |-  ( ( ( ( ( P  e.  Prime  /\  ( N  e.  QQ  /\  N  =/=  0 ) )  /\  x  e.  ZZ )  /\  y  e.  NN )  /\  N  =  ( x  /  y ) )  ->  y  e.  CC )
21 simplr 528 . . . . . . . . . . . 12  |-  ( ( ( ( ( P  e.  Prime  /\  ( N  e.  QQ  /\  N  =/=  0 ) )  /\  x  e.  ZZ )  /\  y  e.  NN )  /\  N  =  ( x  /  y ) )  ->  y  e.  NN )
2221nnap0d 9028 . . . . . . . . . . 11  |-  ( ( ( ( ( P  e.  Prime  /\  ( N  e.  QQ  /\  N  =/=  0 ) )  /\  x  e.  ZZ )  /\  y  e.  NN )  /\  N  =  ( x  /  y ) )  ->  y #  0
)
2316, 20, 22divap0bd 8821 . . . . . . . . . 10  |-  ( ( ( ( ( P  e.  Prime  /\  ( N  e.  QQ  /\  N  =/=  0 ) )  /\  x  e.  ZZ )  /\  y  e.  NN )  /\  N  =  ( x  /  y ) )  ->  ( x #  0 
<->  ( x  /  y
) #  0 ) )
2414, 23mpbird 167 . . . . . . . . 9  |-  ( ( ( ( ( P  e.  Prime  /\  ( N  e.  QQ  /\  N  =/=  0 ) )  /\  x  e.  ZZ )  /\  y  e.  NN )  /\  N  =  ( x  /  y ) )  ->  x #  0
)
25 0zd 9329 . . . . . . . . . 10  |-  ( ( ( ( ( P  e.  Prime  /\  ( N  e.  QQ  /\  N  =/=  0 ) )  /\  x  e.  ZZ )  /\  y  e.  NN )  /\  N  =  ( x  /  y ) )  ->  0  e.  ZZ )
26 zapne 9391 . . . . . . . . . 10  |-  ( ( x  e.  ZZ  /\  0  e.  ZZ )  ->  ( x #  0  <->  x  =/=  0 ) )
2715, 25, 26syl2anc 411 . . . . . . . . 9  |-  ( ( ( ( ( P  e.  Prime  /\  ( N  e.  QQ  /\  N  =/=  0 ) )  /\  x  e.  ZZ )  /\  y  e.  NN )  /\  N  =  ( x  /  y ) )  ->  ( x #  0 
<->  x  =/=  0 ) )
2824, 27mpbid 147 . . . . . . . 8  |-  ( ( ( ( ( P  e.  Prime  /\  ( N  e.  QQ  /\  N  =/=  0 ) )  /\  x  e.  ZZ )  /\  y  e.  NN )  /\  N  =  ( x  /  y ) )  ->  x  =/=  0 )
2928ex 115 . . . . . . 7  |-  ( ( ( ( P  e. 
Prime  /\  ( N  e.  QQ  /\  N  =/=  0 ) )  /\  x  e.  ZZ )  /\  y  e.  NN )  ->  ( N  =  ( x  /  y
)  ->  x  =/=  0 ) )
3029adantrd 279 . . . . . . . 8  |-  ( ( ( ( P  e. 
Prime  /\  ( N  e.  QQ  /\  N  =/=  0 ) )  /\  x  e.  ZZ )  /\  y  e.  NN )  ->  ( ( N  =  ( x  / 
y )  /\  z  =  ( S  -  T ) )  ->  x  =/=  0 ) )
3130exlimdv 1830 . . . . . . 7  |-  ( ( ( ( P  e. 
Prime  /\  ( N  e.  QQ  /\  N  =/=  0 ) )  /\  x  e.  ZZ )  /\  y  e.  NN )  ->  ( E. z
( N  =  ( x  /  y )  /\  z  =  ( S  -  T ) )  ->  x  =/=  0 ) )
32 prmuz2 12269 . . . . . . . . . . . . . . 15  |-  ( P  e.  Prime  ->  P  e.  ( ZZ>= `  2 )
)
3332ad3antrrr 492 . . . . . . . . . . . . . 14  |-  ( ( ( ( P  e. 
Prime  /\  ( N  e.  QQ  /\  N  =/=  0 ) )  /\  x  e.  ZZ )  /\  y  e.  NN )  ->  P  e.  (
ZZ>= `  2 ) )
3433adantr 276 . . . . . . . . . . . . 13  |-  ( ( ( ( ( P  e.  Prime  /\  ( N  e.  QQ  /\  N  =/=  0 ) )  /\  x  e.  ZZ )  /\  y  e.  NN )  /\  x  =/=  0
)  ->  P  e.  ( ZZ>= `  2 )
)
35 simpllr 534 . . . . . . . . . . . . 13  |-  ( ( ( ( ( P  e.  Prime  /\  ( N  e.  QQ  /\  N  =/=  0 ) )  /\  x  e.  ZZ )  /\  y  e.  NN )  /\  x  =/=  0
)  ->  x  e.  ZZ )
36 simpr 110 . . . . . . . . . . . . 13  |-  ( ( ( ( ( P  e.  Prime  /\  ( N  e.  QQ  /\  N  =/=  0 ) )  /\  x  e.  ZZ )  /\  y  e.  NN )  /\  x  =/=  0
)  ->  x  =/=  0 )
37 eqid 2193 . . . . . . . . . . . . . . 15  |-  { n  e.  NN0  |  ( P ^ n )  ||  x }  =  {
n  e.  NN0  | 
( P ^ n
)  ||  x }
38 pcval.1 . . . . . . . . . . . . . . 15  |-  S  =  sup ( { n  e.  NN0  |  ( P ^ n )  ||  x } ,  RR ,  <  )
3937, 38pcprecl 12427 . . . . . . . . . . . . . 14  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  (
x  e.  ZZ  /\  x  =/=  0 ) )  ->  ( S  e. 
NN0  /\  ( P ^ S )  ||  x
) )
4039simpld 112 . . . . . . . . . . . . 13  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  (
x  e.  ZZ  /\  x  =/=  0 ) )  ->  S  e.  NN0 )
4134, 35, 36, 40syl12anc 1247 . . . . . . . . . . . 12  |-  ( ( ( ( ( P  e.  Prime  /\  ( N  e.  QQ  /\  N  =/=  0 ) )  /\  x  e.  ZZ )  /\  y  e.  NN )  /\  x  =/=  0
)  ->  S  e.  NN0 )
4241nn0zd 9437 . . . . . . . . . . 11  |-  ( ( ( ( ( P  e.  Prime  /\  ( N  e.  QQ  /\  N  =/=  0 ) )  /\  x  e.  ZZ )  /\  y  e.  NN )  /\  x  =/=  0
)  ->  S  e.  ZZ )
43 nnne0 9010 . . . . . . . . . . . . . . . 16  |-  ( y  e.  NN  ->  y  =/=  0 )
4443adantl 277 . . . . . . . . . . . . . . 15  |-  ( ( ( ( P  e. 
Prime  /\  ( N  e.  QQ  /\  N  =/=  0 ) )  /\  x  e.  ZZ )  /\  y  e.  NN )  ->  y  =/=  0
)
45 eqid 2193 . . . . . . . . . . . . . . . 16  |-  { n  e.  NN0  |  ( P ^ n )  ||  y }  =  {
n  e.  NN0  | 
( P ^ n
)  ||  y }
46 pcval.2 . . . . . . . . . . . . . . . 16  |-  T  =  sup ( { n  e.  NN0  |  ( P ^ n )  ||  y } ,  RR ,  <  )
4745, 46pcprecl 12427 . . . . . . . . . . . . . . 15  |-  ( ( P  e.  ( ZZ>= ` 
2 )  /\  (
y  e.  ZZ  /\  y  =/=  0 ) )  ->  ( T  e. 
NN0  /\  ( P ^ T )  ||  y
) )
4833, 18, 44, 47syl12anc 1247 . . . . . . . . . . . . . 14  |-  ( ( ( ( P  e. 
Prime  /\  ( N  e.  QQ  /\  N  =/=  0 ) )  /\  x  e.  ZZ )  /\  y  e.  NN )  ->  ( T  e. 
NN0  /\  ( P ^ T )  ||  y
) )
4948simpld 112 . . . . . . . . . . . . 13  |-  ( ( ( ( P  e. 
Prime  /\  ( N  e.  QQ  /\  N  =/=  0 ) )  /\  x  e.  ZZ )  /\  y  e.  NN )  ->  T  e.  NN0 )
5049adantr 276 . . . . . . . . . . . 12  |-  ( ( ( ( ( P  e.  Prime  /\  ( N  e.  QQ  /\  N  =/=  0 ) )  /\  x  e.  ZZ )  /\  y  e.  NN )  /\  x  =/=  0
)  ->  T  e.  NN0 )
5150nn0zd 9437 . . . . . . . . . . 11  |-  ( ( ( ( ( P  e.  Prime  /\  ( N  e.  QQ  /\  N  =/=  0 ) )  /\  x  e.  ZZ )  /\  y  e.  NN )  /\  x  =/=  0
)  ->  T  e.  ZZ )
5242, 51zsubcld 9444 . . . . . . . . . 10  |-  ( ( ( ( ( P  e.  Prime  /\  ( N  e.  QQ  /\  N  =/=  0 ) )  /\  x  e.  ZZ )  /\  y  e.  NN )  /\  x  =/=  0
)  ->  ( S  -  T )  e.  ZZ )
53 biidd 172 . . . . . . . . . . 11  |-  ( z  =  ( S  -  T )  ->  ( N  =  ( x  /  y )  <->  N  =  ( x  /  y
) ) )
5453ceqsexgv 2889 . . . . . . . . . 10  |-  ( ( S  -  T )  e.  ZZ  ->  ( E. z ( z  =  ( S  -  T
)  /\  N  =  ( x  /  y
) )  <->  N  =  ( x  /  y
) ) )
5552, 54syl 14 . . . . . . . . 9  |-  ( ( ( ( ( P  e.  Prime  /\  ( N  e.  QQ  /\  N  =/=  0 ) )  /\  x  e.  ZZ )  /\  y  e.  NN )  /\  x  =/=  0
)  ->  ( E. z ( z  =  ( S  -  T
)  /\  N  =  ( x  /  y
) )  <->  N  =  ( x  /  y
) ) )
56 exancom 1619 . . . . . . . . 9  |-  ( E. z ( z  =  ( S  -  T
)  /\  N  =  ( x  /  y
) )  <->  E. z
( N  =  ( x  /  y )  /\  z  =  ( S  -  T ) ) )
5755, 56bitr3di 195 . . . . . . . 8  |-  ( ( ( ( ( P  e.  Prime  /\  ( N  e.  QQ  /\  N  =/=  0 ) )  /\  x  e.  ZZ )  /\  y  e.  NN )  /\  x  =/=  0
)  ->  ( N  =  ( x  / 
y )  <->  E. z
( N  =  ( x  /  y )  /\  z  =  ( S  -  T ) ) ) )
5857ex 115 . . . . . . 7  |-  ( ( ( ( P  e. 
Prime  /\  ( N  e.  QQ  /\  N  =/=  0 ) )  /\  x  e.  ZZ )  /\  y  e.  NN )  ->  ( x  =/=  0  ->  ( N  =  ( x  / 
y )  <->  E. z
( N  =  ( x  /  y )  /\  z  =  ( S  -  T ) ) ) ) )
5929, 31, 58pm5.21ndd 706 . . . . . 6  |-  ( ( ( ( P  e. 
Prime  /\  ( N  e.  QQ  /\  N  =/=  0 ) )  /\  x  e.  ZZ )  /\  y  e.  NN )  ->  ( N  =  ( x  /  y
)  <->  E. z ( N  =  ( x  / 
y )  /\  z  =  ( S  -  T ) ) ) )
6059rexbidva 2491 . . . . 5  |-  ( ( ( P  e.  Prime  /\  ( N  e.  QQ  /\  N  =/=  0 ) )  /\  x  e.  ZZ )  ->  ( E. y  e.  NN  N  =  ( x  /  y )  <->  E. y  e.  NN  E. z ( N  =  ( x  /  y )  /\  z  =  ( S  -  T ) ) ) )
6160rexbidva 2491 . . . 4  |-  ( ( P  e.  Prime  /\  ( N  e.  QQ  /\  N  =/=  0 ) )  -> 
( E. x  e.  ZZ  E. y  e.  NN  N  =  ( x  /  y )  <->  E. x  e.  ZZ  E. y  e.  NN  E. z ( N  =  ( x  /  y
)  /\  z  =  ( S  -  T
) ) ) )
62 rexcom4 2783 . . . . . 6  |-  ( E. y  e.  NN  E. z ( N  =  ( x  /  y
)  /\  z  =  ( S  -  T
) )  <->  E. z E. y  e.  NN  ( N  =  (
x  /  y )  /\  z  =  ( S  -  T ) ) )
6362rexbii 2501 . . . . 5  |-  ( E. x  e.  ZZ  E. y  e.  NN  E. z
( N  =  ( x  /  y )  /\  z  =  ( S  -  T ) )  <->  E. x  e.  ZZ  E. z E. y  e.  NN  ( N  =  ( x  /  y
)  /\  z  =  ( S  -  T
) ) )
64 rexcom4 2783 . . . . 5  |-  ( E. x  e.  ZZ  E. z E. y  e.  NN  ( N  =  (
x  /  y )  /\  z  =  ( S  -  T ) )  <->  E. z E. x  e.  ZZ  E. y  e.  NN  ( N  =  ( x  /  y
)  /\  z  =  ( S  -  T
) ) )
6563, 64bitri 184 . . . 4  |-  ( E. x  e.  ZZ  E. y  e.  NN  E. z
( N  =  ( x  /  y )  /\  z  =  ( S  -  T ) )  <->  E. z E. x  e.  ZZ  E. y  e.  NN  ( N  =  ( x  /  y
)  /\  z  =  ( S  -  T
) ) )
6661, 65bitrdi 196 . . 3  |-  ( ( P  e.  Prime  /\  ( N  e.  QQ  /\  N  =/=  0 ) )  -> 
( E. x  e.  ZZ  E. y  e.  NN  N  =  ( x  /  y )  <->  E. z E. x  e.  ZZ  E. y  e.  NN  ( N  =  ( x  /  y
)  /\  z  =  ( S  -  T
) ) ) )
673, 66mpbid 147 . 2  |-  ( ( P  e.  Prime  /\  ( N  e.  QQ  /\  N  =/=  0 ) )  ->  E. z E. x  e.  ZZ  E. y  e.  NN  ( N  =  ( x  /  y
)  /\  z  =  ( S  -  T
) ) )
68 eqid 2193 . . . . . . . . . . 11  |-  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  s } ,  RR ,  <  )  =  sup ( { n  e.  NN0  |  ( P ^ n )  ||  s } ,  RR ,  <  )
69 eqid 2193 . . . . . . . . . . 11  |-  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  t } ,  RR ,  <  )  =  sup ( { n  e.  NN0  |  ( P ^ n )  ||  t } ,  RR ,  <  )
70 simp11l 1110 . . . . . . . . . . 11  |-  ( ( ( ( P  e. 
Prime  /\  N  =/=  0
)  /\  ( x  e.  ZZ  /\  y  e.  NN )  /\  ( N  =  ( x  /  y )  /\  z  =  ( S  -  T ) ) )  /\  ( s  e.  ZZ  /\  t  e.  NN )  /\  ( N  =  ( s  /  t )  /\  w  =  ( sup ( { n  e.  NN0  |  ( P ^ n
)  ||  s } ,  RR ,  <  )  -  sup ( { n  e.  NN0  |  ( P ^ n )  ||  t } ,  RR ,  <  ) ) ) )  ->  P  e.  Prime )
71 simp11r 1111 . . . . . . . . . . 11  |-  ( ( ( ( P  e. 
Prime  /\  N  =/=  0
)  /\  ( x  e.  ZZ  /\  y  e.  NN )  /\  ( N  =  ( x  /  y )  /\  z  =  ( S  -  T ) ) )  /\  ( s  e.  ZZ  /\  t  e.  NN )  /\  ( N  =  ( s  /  t )  /\  w  =  ( sup ( { n  e.  NN0  |  ( P ^ n
)  ||  s } ,  RR ,  <  )  -  sup ( { n  e.  NN0  |  ( P ^ n )  ||  t } ,  RR ,  <  ) ) ) )  ->  N  =/=  0
)
72 simp12 1030 . . . . . . . . . . 11  |-  ( ( ( ( P  e. 
Prime  /\  N  =/=  0
)  /\  ( x  e.  ZZ  /\  y  e.  NN )  /\  ( N  =  ( x  /  y )  /\  z  =  ( S  -  T ) ) )  /\  ( s  e.  ZZ  /\  t  e.  NN )  /\  ( N  =  ( s  /  t )  /\  w  =  ( sup ( { n  e.  NN0  |  ( P ^ n
)  ||  s } ,  RR ,  <  )  -  sup ( { n  e.  NN0  |  ( P ^ n )  ||  t } ,  RR ,  <  ) ) ) )  ->  ( x  e.  ZZ  /\  y  e.  NN ) )
73 simp13l 1114 . . . . . . . . . . 11  |-  ( ( ( ( P  e. 
Prime  /\  N  =/=  0
)  /\  ( x  e.  ZZ  /\  y  e.  NN )  /\  ( N  =  ( x  /  y )  /\  z  =  ( S  -  T ) ) )  /\  ( s  e.  ZZ  /\  t  e.  NN )  /\  ( N  =  ( s  /  t )  /\  w  =  ( sup ( { n  e.  NN0  |  ( P ^ n
)  ||  s } ,  RR ,  <  )  -  sup ( { n  e.  NN0  |  ( P ^ n )  ||  t } ,  RR ,  <  ) ) ) )  ->  N  =  ( x  /  y ) )
74 simp2 1000 . . . . . . . . . . 11  |-  ( ( ( ( P  e. 
Prime  /\  N  =/=  0
)  /\  ( x  e.  ZZ  /\  y  e.  NN )  /\  ( N  =  ( x  /  y )  /\  z  =  ( S  -  T ) ) )  /\  ( s  e.  ZZ  /\  t  e.  NN )  /\  ( N  =  ( s  /  t )  /\  w  =  ( sup ( { n  e.  NN0  |  ( P ^ n
)  ||  s } ,  RR ,  <  )  -  sup ( { n  e.  NN0  |  ( P ^ n )  ||  t } ,  RR ,  <  ) ) ) )  ->  ( s  e.  ZZ  /\  t  e.  NN ) )
75 simp3l 1027 . . . . . . . . . . 11  |-  ( ( ( ( P  e. 
Prime  /\  N  =/=  0
)  /\  ( x  e.  ZZ  /\  y  e.  NN )  /\  ( N  =  ( x  /  y )  /\  z  =  ( S  -  T ) ) )  /\  ( s  e.  ZZ  /\  t  e.  NN )  /\  ( N  =  ( s  /  t )  /\  w  =  ( sup ( { n  e.  NN0  |  ( P ^ n
)  ||  s } ,  RR ,  <  )  -  sup ( { n  e.  NN0  |  ( P ^ n )  ||  t } ,  RR ,  <  ) ) ) )  ->  N  =  ( s  /  t ) )
7638, 46, 68, 69, 70, 71, 72, 73, 74, 75pceulem 12432 . . . . . . . . . 10  |-  ( ( ( ( P  e. 
Prime  /\  N  =/=  0
)  /\  ( x  e.  ZZ  /\  y  e.  NN )  /\  ( N  =  ( x  /  y )  /\  z  =  ( S  -  T ) ) )  /\  ( s  e.  ZZ  /\  t  e.  NN )  /\  ( N  =  ( s  /  t )  /\  w  =  ( sup ( { n  e.  NN0  |  ( P ^ n
)  ||  s } ,  RR ,  <  )  -  sup ( { n  e.  NN0  |  ( P ^ n )  ||  t } ,  RR ,  <  ) ) ) )  ->  ( S  -  T )  =  ( sup ( { n  e.  NN0  |  ( P ^ n )  ||  s } ,  RR ,  <  )  -  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  t } ,  RR ,  <  )
) )
77 simp13r 1115 . . . . . . . . . 10  |-  ( ( ( ( P  e. 
Prime  /\  N  =/=  0
)  /\  ( x  e.  ZZ  /\  y  e.  NN )  /\  ( N  =  ( x  /  y )  /\  z  =  ( S  -  T ) ) )  /\  ( s  e.  ZZ  /\  t  e.  NN )  /\  ( N  =  ( s  /  t )  /\  w  =  ( sup ( { n  e.  NN0  |  ( P ^ n
)  ||  s } ,  RR ,  <  )  -  sup ( { n  e.  NN0  |  ( P ^ n )  ||  t } ,  RR ,  <  ) ) ) )  ->  z  =  ( S  -  T ) )
78 simp3r 1028 . . . . . . . . . 10  |-  ( ( ( ( P  e. 
Prime  /\  N  =/=  0
)  /\  ( x  e.  ZZ  /\  y  e.  NN )  /\  ( N  =  ( x  /  y )  /\  z  =  ( S  -  T ) ) )  /\  ( s  e.  ZZ  /\  t  e.  NN )  /\  ( N  =  ( s  /  t )  /\  w  =  ( sup ( { n  e.  NN0  |  ( P ^ n
)  ||  s } ,  RR ,  <  )  -  sup ( { n  e.  NN0  |  ( P ^ n )  ||  t } ,  RR ,  <  ) ) ) )  ->  w  =  ( sup ( { n  e.  NN0  |  ( P ^ n )  ||  s } ,  RR ,  <  )  -  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  t } ,  RR ,  <  )
) )
7976, 77, 783eqtr4d 2236 . . . . . . . . 9  |-  ( ( ( ( P  e. 
Prime  /\  N  =/=  0
)  /\  ( x  e.  ZZ  /\  y  e.  NN )  /\  ( N  =  ( x  /  y )  /\  z  =  ( S  -  T ) ) )  /\  ( s  e.  ZZ  /\  t  e.  NN )  /\  ( N  =  ( s  /  t )  /\  w  =  ( sup ( { n  e.  NN0  |  ( P ^ n
)  ||  s } ,  RR ,  <  )  -  sup ( { n  e.  NN0  |  ( P ^ n )  ||  t } ,  RR ,  <  ) ) ) )  ->  z  =  w )
80793exp 1204 . . . . . . . 8  |-  ( ( ( P  e.  Prime  /\  N  =/=  0 )  /\  ( x  e.  ZZ  /\  y  e.  NN )  /\  ( N  =  ( x  /  y )  /\  z  =  ( S  -  T ) ) )  ->  ( ( s  e.  ZZ  /\  t  e.  NN )  ->  (
( N  =  ( s  /  t )  /\  w  =  ( sup ( { n  e.  NN0  |  ( P ^ n )  ||  s } ,  RR ,  <  )  -  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  t } ,  RR ,  <  )
) )  ->  z  =  w ) ) )
8180rexlimdvv 2618 . . . . . . 7  |-  ( ( ( P  e.  Prime  /\  N  =/=  0 )  /\  ( x  e.  ZZ  /\  y  e.  NN )  /\  ( N  =  ( x  /  y )  /\  z  =  ( S  -  T ) ) )  ->  ( E. s  e.  ZZ  E. t  e.  NN  ( N  =  ( s  /  t
)  /\  w  =  ( sup ( { n  e.  NN0  |  ( P ^ n )  ||  s } ,  RR ,  <  )  -  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  t } ,  RR ,  <  )
) )  ->  z  =  w ) )
82813exp 1204 . . . . . 6  |-  ( ( P  e.  Prime  /\  N  =/=  0 )  ->  (
( x  e.  ZZ  /\  y  e.  NN )  ->  ( ( N  =  ( x  / 
y )  /\  z  =  ( S  -  T ) )  -> 
( E. s  e.  ZZ  E. t  e.  NN  ( N  =  ( s  /  t
)  /\  w  =  ( sup ( { n  e.  NN0  |  ( P ^ n )  ||  s } ,  RR ,  <  )  -  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  t } ,  RR ,  <  )
) )  ->  z  =  w ) ) ) )
8382adantrl 478 . . . . 5  |-  ( ( P  e.  Prime  /\  ( N  e.  QQ  /\  N  =/=  0 ) )  -> 
( ( x  e.  ZZ  /\  y  e.  NN )  ->  (
( N  =  ( x  /  y )  /\  z  =  ( S  -  T ) )  ->  ( E. s  e.  ZZ  E. t  e.  NN  ( N  =  ( s  /  t
)  /\  w  =  ( sup ( { n  e.  NN0  |  ( P ^ n )  ||  s } ,  RR ,  <  )  -  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  t } ,  RR ,  <  )
) )  ->  z  =  w ) ) ) )
8483rexlimdvv 2618 . . . 4  |-  ( ( P  e.  Prime  /\  ( N  e.  QQ  /\  N  =/=  0 ) )  -> 
( E. x  e.  ZZ  E. y  e.  NN  ( N  =  ( x  /  y
)  /\  z  =  ( S  -  T
) )  ->  ( E. s  e.  ZZ  E. t  e.  NN  ( N  =  ( s  /  t )  /\  w  =  ( sup ( { n  e.  NN0  |  ( P ^ n
)  ||  s } ,  RR ,  <  )  -  sup ( { n  e.  NN0  |  ( P ^ n )  ||  t } ,  RR ,  <  ) ) )  -> 
z  =  w ) ) )
8584impd 254 . . 3  |-  ( ( P  e.  Prime  /\  ( N  e.  QQ  /\  N  =/=  0 ) )  -> 
( ( E. x  e.  ZZ  E. y  e.  NN  ( N  =  ( x  /  y
)  /\  z  =  ( S  -  T
) )  /\  E. s  e.  ZZ  E. t  e.  NN  ( N  =  ( s  /  t
)  /\  w  =  ( sup ( { n  e.  NN0  |  ( P ^ n )  ||  s } ,  RR ,  <  )  -  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  t } ,  RR ,  <  )
) ) )  -> 
z  =  w ) )
8685alrimivv 1886 . 2  |-  ( ( P  e.  Prime  /\  ( N  e.  QQ  /\  N  =/=  0 ) )  ->  A. z A. w ( ( E. x  e.  ZZ  E. y  e.  NN  ( N  =  ( x  /  y
)  /\  z  =  ( S  -  T
) )  /\  E. s  e.  ZZ  E. t  e.  NN  ( N  =  ( s  /  t
)  /\  w  =  ( sup ( { n  e.  NN0  |  ( P ^ n )  ||  s } ,  RR ,  <  )  -  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  t } ,  RR ,  <  )
) ) )  -> 
z  =  w ) )
87 eqeq1 2200 . . . . . 6  |-  ( z  =  w  ->  (
z  =  ( S  -  T )  <->  w  =  ( S  -  T
) ) )
8887anbi2d 464 . . . . 5  |-  ( z  =  w  ->  (
( N  =  ( x  /  y )  /\  z  =  ( S  -  T ) )  <->  ( N  =  ( x  /  y
)  /\  w  =  ( S  -  T
) ) ) )
89882rexbidv 2519 . . . 4  |-  ( z  =  w  ->  ( E. x  e.  ZZ  E. y  e.  NN  ( N  =  ( x  /  y )  /\  z  =  ( S  -  T ) )  <->  E. x  e.  ZZ  E. y  e.  NN  ( N  =  ( x  /  y
)  /\  w  =  ( S  -  T
) ) ) )
90 oveq1 5925 . . . . . . . . 9  |-  ( x  =  s  ->  (
x  /  y )  =  ( s  / 
y ) )
9190eqeq2d 2205 . . . . . . . 8  |-  ( x  =  s  ->  ( N  =  ( x  /  y )  <->  N  =  ( s  /  y
) ) )
92 breq2 4033 . . . . . . . . . . . . 13  |-  ( x  =  s  ->  (
( P ^ n
)  ||  x  <->  ( P ^ n )  ||  s ) )
9392rabbidv 2749 . . . . . . . . . . . 12  |-  ( x  =  s  ->  { n  e.  NN0  |  ( P ^ n )  ||  x }  =  {
n  e.  NN0  | 
( P ^ n
)  ||  s }
)
9493supeq1d 7046 . . . . . . . . . . 11  |-  ( x  =  s  ->  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  x } ,  RR ,  <  )  =  sup ( { n  e.  NN0  |  ( P ^ n )  ||  s } ,  RR ,  <  ) )
9538, 94eqtrid 2238 . . . . . . . . . 10  |-  ( x  =  s  ->  S  =  sup ( { n  e.  NN0  |  ( P ^ n )  ||  s } ,  RR ,  <  ) )
9695oveq1d 5933 . . . . . . . . 9  |-  ( x  =  s  ->  ( S  -  T )  =  ( sup ( { n  e.  NN0  |  ( P ^ n
)  ||  s } ,  RR ,  <  )  -  T ) )
9796eqeq2d 2205 . . . . . . . 8  |-  ( x  =  s  ->  (
w  =  ( S  -  T )  <->  w  =  ( sup ( { n  e.  NN0  |  ( P ^ n )  ||  s } ,  RR ,  <  )  -  T ) ) )
9891, 97anbi12d 473 . . . . . . 7  |-  ( x  =  s  ->  (
( N  =  ( x  /  y )  /\  w  =  ( S  -  T ) )  <->  ( N  =  ( s  /  y
)  /\  w  =  ( sup ( { n  e.  NN0  |  ( P ^ n )  ||  s } ,  RR ,  <  )  -  T ) ) ) )
9998rexbidv 2495 . . . . . 6  |-  ( x  =  s  ->  ( E. y  e.  NN  ( N  =  (
x  /  y )  /\  w  =  ( S  -  T ) )  <->  E. y  e.  NN  ( N  =  (
s  /  y )  /\  w  =  ( sup ( { n  e.  NN0  |  ( P ^ n )  ||  s } ,  RR ,  <  )  -  T ) ) ) )
100 oveq2 5926 . . . . . . . . 9  |-  ( y  =  t  ->  (
s  /  y )  =  ( s  / 
t ) )
101100eqeq2d 2205 . . . . . . . 8  |-  ( y  =  t  ->  ( N  =  ( s  /  y )  <->  N  =  ( s  /  t
) ) )
102 breq2 4033 . . . . . . . . . . . . 13  |-  ( y  =  t  ->  (
( P ^ n
)  ||  y  <->  ( P ^ n )  ||  t ) )
103102rabbidv 2749 . . . . . . . . . . . 12  |-  ( y  =  t  ->  { n  e.  NN0  |  ( P ^ n )  ||  y }  =  {
n  e.  NN0  | 
( P ^ n
)  ||  t }
)
104103supeq1d 7046 . . . . . . . . . . 11  |-  ( y  =  t  ->  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  y } ,  RR ,  <  )  =  sup ( { n  e.  NN0  |  ( P ^ n )  ||  t } ,  RR ,  <  ) )
10546, 104eqtrid 2238 . . . . . . . . . 10  |-  ( y  =  t  ->  T  =  sup ( { n  e.  NN0  |  ( P ^ n )  ||  t } ,  RR ,  <  ) )
106105oveq2d 5934 . . . . . . . . 9  |-  ( y  =  t  ->  ( sup ( { n  e. 
NN0  |  ( P ^ n )  ||  s } ,  RR ,  <  )  -  T )  =  ( sup ( { n  e.  NN0  |  ( P ^ n
)  ||  s } ,  RR ,  <  )  -  sup ( { n  e.  NN0  |  ( P ^ n )  ||  t } ,  RR ,  <  ) ) )
107106eqeq2d 2205 . . . . . . . 8  |-  ( y  =  t  ->  (
w  =  ( sup ( { n  e. 
NN0  |  ( P ^ n )  ||  s } ,  RR ,  <  )  -  T )  <-> 
w  =  ( sup ( { n  e. 
NN0  |  ( P ^ n )  ||  s } ,  RR ,  <  )  -  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  t } ,  RR ,  <  )
) ) )
108101, 107anbi12d 473 . . . . . . 7  |-  ( y  =  t  ->  (
( N  =  ( s  /  y )  /\  w  =  ( sup ( { n  e.  NN0  |  ( P ^ n )  ||  s } ,  RR ,  <  )  -  T ) )  <->  ( N  =  ( s  /  t
)  /\  w  =  ( sup ( { n  e.  NN0  |  ( P ^ n )  ||  s } ,  RR ,  <  )  -  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  t } ,  RR ,  <  )
) ) ) )
109108cbvrexvw 2731 . . . . . 6  |-  ( E. y  e.  NN  ( N  =  ( s  /  y )  /\  w  =  ( sup ( { n  e.  NN0  |  ( P ^ n
)  ||  s } ,  RR ,  <  )  -  T ) )  <->  E. t  e.  NN  ( N  =  ( s  /  t
)  /\  w  =  ( sup ( { n  e.  NN0  |  ( P ^ n )  ||  s } ,  RR ,  <  )  -  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  t } ,  RR ,  <  )
) ) )
11099, 109bitrdi 196 . . . . 5  |-  ( x  =  s  ->  ( E. y  e.  NN  ( N  =  (
x  /  y )  /\  w  =  ( S  -  T ) )  <->  E. t  e.  NN  ( N  =  (
s  /  t )  /\  w  =  ( sup ( { n  e.  NN0  |  ( P ^ n )  ||  s } ,  RR ,  <  )  -  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  t } ,  RR ,  <  )
) ) ) )
111110cbvrexvw 2731 . . . 4  |-  ( E. x  e.  ZZ  E. y  e.  NN  ( N  =  ( x  /  y )  /\  w  =  ( S  -  T ) )  <->  E. s  e.  ZZ  E. t  e.  NN  ( N  =  ( s  /  t
)  /\  w  =  ( sup ( { n  e.  NN0  |  ( P ^ n )  ||  s } ,  RR ,  <  )  -  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  t } ,  RR ,  <  )
) ) )
11289, 111bitrdi 196 . . 3  |-  ( z  =  w  ->  ( E. x  e.  ZZ  E. y  e.  NN  ( N  =  ( x  /  y )  /\  z  =  ( S  -  T ) )  <->  E. s  e.  ZZ  E. t  e.  NN  ( N  =  ( s  /  t
)  /\  w  =  ( sup ( { n  e.  NN0  |  ( P ^ n )  ||  s } ,  RR ,  <  )  -  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  t } ,  RR ,  <  )
) ) ) )
113112eu4 2104 . 2  |-  ( E! z E. x  e.  ZZ  E. y  e.  NN  ( N  =  ( x  /  y
)  /\  z  =  ( S  -  T
) )  <->  ( E. z E. x  e.  ZZ  E. y  e.  NN  ( N  =  ( x  /  y )  /\  z  =  ( S  -  T ) )  /\  A. z A. w ( ( E. x  e.  ZZ  E. y  e.  NN  ( N  =  ( x  /  y
)  /\  z  =  ( S  -  T
) )  /\  E. s  e.  ZZ  E. t  e.  NN  ( N  =  ( s  /  t
)  /\  w  =  ( sup ( { n  e.  NN0  |  ( P ^ n )  ||  s } ,  RR ,  <  )  -  sup ( { n  e.  NN0  |  ( P ^ n
)  ||  t } ,  RR ,  <  )
) ) )  -> 
z  =  w ) ) )
11467, 86, 113sylanbrc 417 1  |-  ( ( P  e.  Prime  /\  ( N  e.  QQ  /\  N  =/=  0 ) )  ->  E! z E. x  e.  ZZ  E. y  e.  NN  ( N  =  ( x  /  y
)  /\  z  =  ( S  -  T
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980   A.wal 1362    = wceq 1364   E.wex 1503   E!weu 2042    e. wcel 2164    =/= wne 2364   E.wrex 2473   {crab 2476   class class class wbr 4029   ` cfv 5254  (class class class)co 5918   supcsup 7041   RRcr 7871   0cc0 7872    < clt 8054    - cmin 8190   # cap 8600    / cdiv 8691   NNcn 8982   2c2 9033   NN0cn0 9240   ZZcz 9317   ZZ>=cuz 9592   QQcq 9684   ^cexp 10609    || cdvds 11930   Primecprime 12245
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-mulrcl 7971  ax-addcom 7972  ax-mulcom 7973  ax-addass 7974  ax-mulass 7975  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-1rid 7979  ax-0id 7980  ax-rnegex 7981  ax-precex 7982  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988  ax-pre-mulgt0 7989  ax-pre-mulext 7990  ax-arch 7991  ax-caucvg 7992
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-po 4327  df-iso 4328  df-iord 4397  df-on 4399  df-ilim 4400  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-isom 5263  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-frec 6444  df-1o 6469  df-2o 6470  df-er 6587  df-en 6795  df-sup 7043  df-inf 7044  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-reap 8594  df-ap 8601  df-div 8692  df-inn 8983  df-2 9041  df-3 9042  df-4 9043  df-n0 9241  df-z 9318  df-uz 9593  df-q 9685  df-rp 9720  df-fz 10075  df-fzo 10209  df-fl 10339  df-mod 10394  df-seqfrec 10519  df-exp 10610  df-cj 10986  df-re 10987  df-im 10988  df-rsqrt 11142  df-abs 11143  df-dvds 11931  df-gcd 12080  df-prm 12246
This theorem is referenced by:  pcval  12434  pczpre  12435  pcdiv  12440
  Copyright terms: Public domain W3C validator