ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  euxfrdc Unicode version

Theorem euxfrdc 2916
Description: Transfer existential uniqueness from a variable  x to another variable  y contained in expression  A. (Contributed by NM, 14-Nov-2004.)
Hypotheses
Ref Expression
euxfrdc.1  |-  A  e. 
_V
euxfrdc.2  |-  E! y  x  =  A
euxfrdc.3  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
euxfrdc  |-  (DECID  E. y E. x ( x  =  A  /\  ps )  ->  ( E! x ph  <->  E! y ps ) )
Distinct variable groups:    ps, x    ph, y    x, A
Allowed substitution hints:    ph( x)    ps( y)    A( y)

Proof of Theorem euxfrdc
StepHypRef Expression
1 euxfrdc.2 . . . . . 6  |-  E! y  x  =  A
2 euex 2049 . . . . . 6  |-  ( E! y  x  =  A  ->  E. y  x  =  A )
31, 2ax-mp 5 . . . . 5  |-  E. y  x  =  A
43biantrur 301 . . . 4  |-  ( ph  <->  ( E. y  x  =  A  /\  ph )
)
5 19.41v 1895 . . . 4  |-  ( E. y ( x  =  A  /\  ph )  <->  ( E. y  x  =  A  /\  ph )
)
6 euxfrdc.3 . . . . . 6  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
76pm5.32i 451 . . . . 5  |-  ( ( x  =  A  /\  ph )  <->  ( x  =  A  /\  ps )
)
87exbii 1598 . . . 4  |-  ( E. y ( x  =  A  /\  ph )  <->  E. y ( x  =  A  /\  ps )
)
94, 5, 83bitr2i 207 . . 3  |-  ( ph  <->  E. y ( x  =  A  /\  ps )
)
109eubii 2028 . 2  |-  ( E! x ph  <->  E! x E. y ( x  =  A  /\  ps )
)
11 euxfrdc.1 . . 3  |-  A  e. 
_V
121eumoi 2052 . . 3  |-  E* y  x  =  A
1311, 12euxfr2dc 2915 . 2  |-  (DECID  E. y E. x ( x  =  A  /\  ps )  ->  ( E! x E. y ( x  =  A  /\  ps )  <->  E! y ps ) )
1410, 13syl5bb 191 1  |-  (DECID  E. y E. x ( x  =  A  /\  ps )  ->  ( E! x ph  <->  E! y ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104  DECID wdc 829    = wceq 1348   E.wex 1485   E!weu 2019    e. wcel 2141   _Vcvv 2730
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-dc 830  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-v 2732
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator