ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  euxfrdc Unicode version

Theorem euxfrdc 2925
Description: Transfer existential uniqueness from a variable  x to another variable  y contained in expression  A. (Contributed by NM, 14-Nov-2004.)
Hypotheses
Ref Expression
euxfrdc.1  |-  A  e. 
_V
euxfrdc.2  |-  E! y  x  =  A
euxfrdc.3  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
euxfrdc  |-  (DECID  E. y E. x ( x  =  A  /\  ps )  ->  ( E! x ph  <->  E! y ps ) )
Distinct variable groups:    ps, x    ph, y    x, A
Allowed substitution hints:    ph( x)    ps( y)    A( y)

Proof of Theorem euxfrdc
StepHypRef Expression
1 euxfrdc.2 . . . . . 6  |-  E! y  x  =  A
2 euex 2056 . . . . . 6  |-  ( E! y  x  =  A  ->  E. y  x  =  A )
31, 2ax-mp 5 . . . . 5  |-  E. y  x  =  A
43biantrur 303 . . . 4  |-  ( ph  <->  ( E. y  x  =  A  /\  ph )
)
5 19.41v 1902 . . . 4  |-  ( E. y ( x  =  A  /\  ph )  <->  ( E. y  x  =  A  /\  ph )
)
6 euxfrdc.3 . . . . . 6  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
76pm5.32i 454 . . . . 5  |-  ( ( x  =  A  /\  ph )  <->  ( x  =  A  /\  ps )
)
87exbii 1605 . . . 4  |-  ( E. y ( x  =  A  /\  ph )  <->  E. y ( x  =  A  /\  ps )
)
94, 5, 83bitr2i 208 . . 3  |-  ( ph  <->  E. y ( x  =  A  /\  ps )
)
109eubii 2035 . 2  |-  ( E! x ph  <->  E! x E. y ( x  =  A  /\  ps )
)
11 euxfrdc.1 . . 3  |-  A  e. 
_V
121eumoi 2059 . . 3  |-  E* y  x  =  A
1311, 12euxfr2dc 2924 . 2  |-  (DECID  E. y E. x ( x  =  A  /\  ps )  ->  ( E! x E. y ( x  =  A  /\  ps )  <->  E! y ps ) )
1410, 13bitrid 192 1  |-  (DECID  E. y E. x ( x  =  A  /\  ps )  ->  ( E! x ph  <->  E! y ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105  DECID wdc 834    = wceq 1353   E.wex 1492   E!weu 2026    e. wcel 2148   _Vcvv 2739
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-dc 835  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-v 2741
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator