ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  euxfrdc Unicode version

Theorem euxfrdc 2946
Description: Transfer existential uniqueness from a variable  x to another variable  y contained in expression  A. (Contributed by NM, 14-Nov-2004.)
Hypotheses
Ref Expression
euxfrdc.1  |-  A  e. 
_V
euxfrdc.2  |-  E! y  x  =  A
euxfrdc.3  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
euxfrdc  |-  (DECID  E. y E. x ( x  =  A  /\  ps )  ->  ( E! x ph  <->  E! y ps ) )
Distinct variable groups:    ps, x    ph, y    x, A
Allowed substitution hints:    ph( x)    ps( y)    A( y)

Proof of Theorem euxfrdc
StepHypRef Expression
1 euxfrdc.2 . . . . . 6  |-  E! y  x  =  A
2 euex 2072 . . . . . 6  |-  ( E! y  x  =  A  ->  E. y  x  =  A )
31, 2ax-mp 5 . . . . 5  |-  E. y  x  =  A
43biantrur 303 . . . 4  |-  ( ph  <->  ( E. y  x  =  A  /\  ph )
)
5 19.41v 1914 . . . 4  |-  ( E. y ( x  =  A  /\  ph )  <->  ( E. y  x  =  A  /\  ph )
)
6 euxfrdc.3 . . . . . 6  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
76pm5.32i 454 . . . . 5  |-  ( ( x  =  A  /\  ph )  <->  ( x  =  A  /\  ps )
)
87exbii 1616 . . . 4  |-  ( E. y ( x  =  A  /\  ph )  <->  E. y ( x  =  A  /\  ps )
)
94, 5, 83bitr2i 208 . . 3  |-  ( ph  <->  E. y ( x  =  A  /\  ps )
)
109eubii 2051 . 2  |-  ( E! x ph  <->  E! x E. y ( x  =  A  /\  ps )
)
11 euxfrdc.1 . . 3  |-  A  e. 
_V
121eumoi 2075 . . 3  |-  E* y  x  =  A
1311, 12euxfr2dc 2945 . 2  |-  (DECID  E. y E. x ( x  =  A  /\  ps )  ->  ( E! x E. y ( x  =  A  /\  ps )  <->  E! y ps ) )
1410, 13bitrid 192 1  |-  (DECID  E. y E. x ( x  =  A  /\  ps )  ->  ( E! x ph  <->  E! y ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105  DECID wdc 835    = wceq 1364   E.wex 1503   E!weu 2042    e. wcel 2164   _Vcvv 2760
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-dc 836  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-v 2762
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator