ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  euxfrdc Unicode version

Theorem euxfrdc 2912
Description: Transfer existential uniqueness from a variable  x to another variable  y contained in expression  A. (Contributed by NM, 14-Nov-2004.)
Hypotheses
Ref Expression
euxfrdc.1  |-  A  e. 
_V
euxfrdc.2  |-  E! y  x  =  A
euxfrdc.3  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
euxfrdc  |-  (DECID  E. y E. x ( x  =  A  /\  ps )  ->  ( E! x ph  <->  E! y ps ) )
Distinct variable groups:    ps, x    ph, y    x, A
Allowed substitution hints:    ph( x)    ps( y)    A( y)

Proof of Theorem euxfrdc
StepHypRef Expression
1 euxfrdc.2 . . . . . 6  |-  E! y  x  =  A
2 euex 2044 . . . . . 6  |-  ( E! y  x  =  A  ->  E. y  x  =  A )
31, 2ax-mp 5 . . . . 5  |-  E. y  x  =  A
43biantrur 301 . . . 4  |-  ( ph  <->  ( E. y  x  =  A  /\  ph )
)
5 19.41v 1890 . . . 4  |-  ( E. y ( x  =  A  /\  ph )  <->  ( E. y  x  =  A  /\  ph )
)
6 euxfrdc.3 . . . . . 6  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
76pm5.32i 450 . . . . 5  |-  ( ( x  =  A  /\  ph )  <->  ( x  =  A  /\  ps )
)
87exbii 1593 . . . 4  |-  ( E. y ( x  =  A  /\  ph )  <->  E. y ( x  =  A  /\  ps )
)
94, 5, 83bitr2i 207 . . 3  |-  ( ph  <->  E. y ( x  =  A  /\  ps )
)
109eubii 2023 . 2  |-  ( E! x ph  <->  E! x E. y ( x  =  A  /\  ps )
)
11 euxfrdc.1 . . 3  |-  A  e. 
_V
121eumoi 2047 . . 3  |-  E* y  x  =  A
1311, 12euxfr2dc 2911 . 2  |-  (DECID  E. y E. x ( x  =  A  /\  ps )  ->  ( E! x E. y ( x  =  A  /\  ps )  <->  E! y ps ) )
1410, 13syl5bb 191 1  |-  (DECID  E. y E. x ( x  =  A  /\  ps )  ->  ( E! x ph  <->  E! y ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104  DECID wdc 824    = wceq 1343   E.wex 1480   E!weu 2014    e. wcel 2136   _Vcvv 2726
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-dc 825  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-v 2728
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator