Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > euxfrdc | Unicode version |
Description: Transfer existential uniqueness from a variable to another variable contained in expression . (Contributed by NM, 14-Nov-2004.) |
Ref | Expression |
---|---|
euxfrdc.1 | |
euxfrdc.2 | |
euxfrdc.3 |
Ref | Expression |
---|---|
euxfrdc | DECID |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | euxfrdc.2 | . . . . . 6 | |
2 | euex 2049 | . . . . . 6 | |
3 | 1, 2 | ax-mp 5 | . . . . 5 |
4 | 3 | biantrur 301 | . . . 4 |
5 | 19.41v 1895 | . . . 4 | |
6 | euxfrdc.3 | . . . . . 6 | |
7 | 6 | pm5.32i 451 | . . . . 5 |
8 | 7 | exbii 1598 | . . . 4 |
9 | 4, 5, 8 | 3bitr2i 207 | . . 3 |
10 | 9 | eubii 2028 | . 2 |
11 | euxfrdc.1 | . . 3 | |
12 | 1 | eumoi 2052 | . . 3 |
13 | 11, 12 | euxfr2dc 2915 | . 2 DECID |
14 | 10, 13 | syl5bb 191 | 1 DECID |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 DECID wdc 829 wceq 1348 wex 1485 weu 2019 wcel 2141 cvv 2730 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-dc 830 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-v 2732 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |