ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  euxfrdc GIF version

Theorem euxfrdc 2925
Description: Transfer existential uniqueness from a variable 𝑥 to another variable 𝑦 contained in expression 𝐴. (Contributed by NM, 14-Nov-2004.)
Hypotheses
Ref Expression
euxfrdc.1 𝐴 ∈ V
euxfrdc.2 ∃!𝑦 𝑥 = 𝐴
euxfrdc.3 (𝑥 = 𝐴 → (𝜑𝜓))
Assertion
Ref Expression
euxfrdc (DECID𝑦𝑥(𝑥 = 𝐴𝜓) → (∃!𝑥𝜑 ↔ ∃!𝑦𝜓))
Distinct variable groups:   𝜓,𝑥   𝜑,𝑦   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)   𝐴(𝑦)

Proof of Theorem euxfrdc
StepHypRef Expression
1 euxfrdc.2 . . . . . 6 ∃!𝑦 𝑥 = 𝐴
2 euex 2056 . . . . . 6 (∃!𝑦 𝑥 = 𝐴 → ∃𝑦 𝑥 = 𝐴)
31, 2ax-mp 5 . . . . 5 𝑦 𝑥 = 𝐴
43biantrur 303 . . . 4 (𝜑 ↔ (∃𝑦 𝑥 = 𝐴𝜑))
5 19.41v 1902 . . . 4 (∃𝑦(𝑥 = 𝐴𝜑) ↔ (∃𝑦 𝑥 = 𝐴𝜑))
6 euxfrdc.3 . . . . . 6 (𝑥 = 𝐴 → (𝜑𝜓))
76pm5.32i 454 . . . . 5 ((𝑥 = 𝐴𝜑) ↔ (𝑥 = 𝐴𝜓))
87exbii 1605 . . . 4 (∃𝑦(𝑥 = 𝐴𝜑) ↔ ∃𝑦(𝑥 = 𝐴𝜓))
94, 5, 83bitr2i 208 . . 3 (𝜑 ↔ ∃𝑦(𝑥 = 𝐴𝜓))
109eubii 2035 . 2 (∃!𝑥𝜑 ↔ ∃!𝑥𝑦(𝑥 = 𝐴𝜓))
11 euxfrdc.1 . . 3 𝐴 ∈ V
121eumoi 2059 . . 3 ∃*𝑦 𝑥 = 𝐴
1311, 12euxfr2dc 2924 . 2 (DECID𝑦𝑥(𝑥 = 𝐴𝜓) → (∃!𝑥𝑦(𝑥 = 𝐴𝜓) ↔ ∃!𝑦𝜓))
1410, 13bitrid 192 1 (DECID𝑦𝑥(𝑥 = 𝐴𝜓) → (∃!𝑥𝜑 ↔ ∃!𝑦𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  DECID wdc 834   = wceq 1353  wex 1492  ∃!weu 2026  wcel 2148  Vcvv 2739
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-dc 835  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-v 2741
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator