| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > euxfrdc | GIF version | ||
| Description: Transfer existential uniqueness from a variable 𝑥 to another variable 𝑦 contained in expression 𝐴. (Contributed by NM, 14-Nov-2004.) |
| Ref | Expression |
|---|---|
| euxfrdc.1 | ⊢ 𝐴 ∈ V |
| euxfrdc.2 | ⊢ ∃!𝑦 𝑥 = 𝐴 |
| euxfrdc.3 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| euxfrdc | ⊢ (DECID ∃𝑦∃𝑥(𝑥 = 𝐴 ∧ 𝜓) → (∃!𝑥𝜑 ↔ ∃!𝑦𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | euxfrdc.2 | . . . . . 6 ⊢ ∃!𝑦 𝑥 = 𝐴 | |
| 2 | euex 2087 | . . . . . 6 ⊢ (∃!𝑦 𝑥 = 𝐴 → ∃𝑦 𝑥 = 𝐴) | |
| 3 | 1, 2 | ax-mp 5 | . . . . 5 ⊢ ∃𝑦 𝑥 = 𝐴 |
| 4 | 3 | biantrur 303 | . . . 4 ⊢ (𝜑 ↔ (∃𝑦 𝑥 = 𝐴 ∧ 𝜑)) |
| 5 | 19.41v 1929 | . . . 4 ⊢ (∃𝑦(𝑥 = 𝐴 ∧ 𝜑) ↔ (∃𝑦 𝑥 = 𝐴 ∧ 𝜑)) | |
| 6 | euxfrdc.3 | . . . . . 6 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 7 | 6 | pm5.32i 454 | . . . . 5 ⊢ ((𝑥 = 𝐴 ∧ 𝜑) ↔ (𝑥 = 𝐴 ∧ 𝜓)) |
| 8 | 7 | exbii 1631 | . . . 4 ⊢ (∃𝑦(𝑥 = 𝐴 ∧ 𝜑) ↔ ∃𝑦(𝑥 = 𝐴 ∧ 𝜓)) |
| 9 | 4, 5, 8 | 3bitr2i 208 | . . 3 ⊢ (𝜑 ↔ ∃𝑦(𝑥 = 𝐴 ∧ 𝜓)) |
| 10 | 9 | eubii 2066 | . 2 ⊢ (∃!𝑥𝜑 ↔ ∃!𝑥∃𝑦(𝑥 = 𝐴 ∧ 𝜓)) |
| 11 | euxfrdc.1 | . . 3 ⊢ 𝐴 ∈ V | |
| 12 | 1 | eumoi 2090 | . . 3 ⊢ ∃*𝑦 𝑥 = 𝐴 |
| 13 | 11, 12 | euxfr2dc 2968 | . 2 ⊢ (DECID ∃𝑦∃𝑥(𝑥 = 𝐴 ∧ 𝜓) → (∃!𝑥∃𝑦(𝑥 = 𝐴 ∧ 𝜓) ↔ ∃!𝑦𝜓)) |
| 14 | 10, 13 | bitrid 192 | 1 ⊢ (DECID ∃𝑦∃𝑥(𝑥 = 𝐴 ∧ 𝜓) → (∃!𝑥𝜑 ↔ ∃!𝑦𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 DECID wdc 838 = wceq 1375 ∃wex 1518 ∃!weu 2057 ∈ wcel 2180 Vcvv 2779 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-ext 2191 |
| This theorem depends on definitions: df-bi 117 df-dc 839 df-tru 1378 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-v 2781 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |