| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > euxfrdc | GIF version | ||
| Description: Transfer existential uniqueness from a variable 𝑥 to another variable 𝑦 contained in expression 𝐴. (Contributed by NM, 14-Nov-2004.) |
| Ref | Expression |
|---|---|
| euxfrdc.1 | ⊢ 𝐴 ∈ V |
| euxfrdc.2 | ⊢ ∃!𝑦 𝑥 = 𝐴 |
| euxfrdc.3 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| euxfrdc | ⊢ (DECID ∃𝑦∃𝑥(𝑥 = 𝐴 ∧ 𝜓) → (∃!𝑥𝜑 ↔ ∃!𝑦𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | euxfrdc.2 | . . . . . 6 ⊢ ∃!𝑦 𝑥 = 𝐴 | |
| 2 | euex 2075 | . . . . . 6 ⊢ (∃!𝑦 𝑥 = 𝐴 → ∃𝑦 𝑥 = 𝐴) | |
| 3 | 1, 2 | ax-mp 5 | . . . . 5 ⊢ ∃𝑦 𝑥 = 𝐴 |
| 4 | 3 | biantrur 303 | . . . 4 ⊢ (𝜑 ↔ (∃𝑦 𝑥 = 𝐴 ∧ 𝜑)) |
| 5 | 19.41v 1917 | . . . 4 ⊢ (∃𝑦(𝑥 = 𝐴 ∧ 𝜑) ↔ (∃𝑦 𝑥 = 𝐴 ∧ 𝜑)) | |
| 6 | euxfrdc.3 | . . . . . 6 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 7 | 6 | pm5.32i 454 | . . . . 5 ⊢ ((𝑥 = 𝐴 ∧ 𝜑) ↔ (𝑥 = 𝐴 ∧ 𝜓)) |
| 8 | 7 | exbii 1619 | . . . 4 ⊢ (∃𝑦(𝑥 = 𝐴 ∧ 𝜑) ↔ ∃𝑦(𝑥 = 𝐴 ∧ 𝜓)) |
| 9 | 4, 5, 8 | 3bitr2i 208 | . . 3 ⊢ (𝜑 ↔ ∃𝑦(𝑥 = 𝐴 ∧ 𝜓)) |
| 10 | 9 | eubii 2054 | . 2 ⊢ (∃!𝑥𝜑 ↔ ∃!𝑥∃𝑦(𝑥 = 𝐴 ∧ 𝜓)) |
| 11 | euxfrdc.1 | . . 3 ⊢ 𝐴 ∈ V | |
| 12 | 1 | eumoi 2078 | . . 3 ⊢ ∃*𝑦 𝑥 = 𝐴 |
| 13 | 11, 12 | euxfr2dc 2949 | . 2 ⊢ (DECID ∃𝑦∃𝑥(𝑥 = 𝐴 ∧ 𝜓) → (∃!𝑥∃𝑦(𝑥 = 𝐴 ∧ 𝜓) ↔ ∃!𝑦𝜓)) |
| 14 | 10, 13 | bitrid 192 | 1 ⊢ (DECID ∃𝑦∃𝑥(𝑥 = 𝐴 ∧ 𝜓) → (∃!𝑥𝜑 ↔ ∃!𝑦𝜓)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 DECID wdc 835 = wceq 1364 ∃wex 1506 ∃!weu 2045 ∈ wcel 2167 Vcvv 2763 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-v 2765 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |