ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exmid0el Unicode version

Theorem exmid0el 4287
Description: Excluded middle is equivalent to decidability of  (/) being an element of an arbitrary set. (Contributed by Jim Kingdon, 18-Jun-2022.)
Assertion
Ref Expression
exmid0el  |-  (EXMID  <->  A. xDECID  (/)  e.  x
)

Proof of Theorem exmid0el
StepHypRef Expression
1 exmidexmid 4279 . . 3  |-  (EXMID  -> DECID  (/)  e.  x )
21alrimiv 1920 . 2  |-  (EXMID  ->  A. xDECID  (/)  e.  x
)
3 ax-1 6 . . . 4  |-  (DECID  (/)  e.  x  ->  ( x  C_  { (/) }  -> DECID  (/) 
e.  x ) )
43alimi 1501 . . 3  |-  ( A. xDECID  (/) 
e.  x  ->  A. x
( x  C_  { (/) }  -> DECID  (/) 
e.  x ) )
5 df-exmid 4278 . . 3  |-  (EXMID  <->  A. x
( x  C_  { (/) }  -> DECID  (/) 
e.  x ) )
64, 5sylibr 134 . 2  |-  ( A. xDECID  (/) 
e.  x  -> EXMID )
72, 6impbii 126 1  |-  (EXMID  <->  A. xDECID  (/)  e.  x
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105  DECID wdc 839   A.wal 1393    e. wcel 2200    C_ wss 3197   (/)c0 3491   {csn 3666  EXMIDwem 4277
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-nul 4209  ax-pow 4257
This theorem depends on definitions:  df-bi 117  df-dc 840  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-rab 2517  df-v 2801  df-dif 3199  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-exmid 4278
This theorem is referenced by:  exmidel  4288
  Copyright terms: Public domain W3C validator