ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exmid0el Unicode version

Theorem exmid0el 4233
Description: Excluded middle is equivalent to decidability of  (/) being an element of an arbitrary set. (Contributed by Jim Kingdon, 18-Jun-2022.)
Assertion
Ref Expression
exmid0el  |-  (EXMID  <->  A. xDECID  (/)  e.  x
)

Proof of Theorem exmid0el
StepHypRef Expression
1 exmidexmid 4225 . . 3  |-  (EXMID  -> DECID  (/)  e.  x )
21alrimiv 1885 . 2  |-  (EXMID  ->  A. xDECID  (/)  e.  x
)
3 ax-1 6 . . . 4  |-  (DECID  (/)  e.  x  ->  ( x  C_  { (/) }  -> DECID  (/) 
e.  x ) )
43alimi 1466 . . 3  |-  ( A. xDECID  (/) 
e.  x  ->  A. x
( x  C_  { (/) }  -> DECID  (/) 
e.  x ) )
5 df-exmid 4224 . . 3  |-  (EXMID  <->  A. x
( x  C_  { (/) }  -> DECID  (/) 
e.  x ) )
64, 5sylibr 134 . 2  |-  ( A. xDECID  (/) 
e.  x  -> EXMID )
72, 6impbii 126 1  |-  (EXMID  <->  A. xDECID  (/)  e.  x
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105  DECID wdc 835   A.wal 1362    e. wcel 2164    C_ wss 3153   (/)c0 3446   {csn 3618  EXMIDwem 4223
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-nul 4155  ax-pow 4203
This theorem depends on definitions:  df-bi 117  df-dc 836  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-rab 2481  df-v 2762  df-dif 3155  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-exmid 4224
This theorem is referenced by:  exmidel  4234
  Copyright terms: Public domain W3C validator