Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > exmidel | Unicode version |
Description: Excluded middle is equivalent to decidability of membership for two arbitrary sets. (Contributed by Jim Kingdon, 18-Jun-2022.) |
Ref | Expression |
---|---|
exmidel | EXMID DECID |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exmidexmid 4175 | . . 3 EXMID DECID | |
2 | 1 | alrimivv 1863 | . 2 EXMID DECID |
3 | 0ex 4109 | . . . 4 | |
4 | eleq1 2229 | . . . . . 6 | |
5 | 4 | dcbid 828 | . . . . 5 DECID DECID |
6 | 5 | albidv 1812 | . . . 4 DECID DECID |
7 | 3, 6 | spcv 2820 | . . 3 DECID DECID |
8 | exmid0el 4183 | . . 3 EXMID DECID | |
9 | 7, 8 | sylibr 133 | . 2 DECID EXMID |
10 | 2, 9 | impbii 125 | 1 EXMID DECID |
Colors of variables: wff set class |
Syntax hints: wb 104 DECID wdc 824 wal 1341 wceq 1343 wcel 2136 c0 3409 EXMIDwem 4173 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-nul 4108 ax-pow 4153 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-rab 2453 df-v 2728 df-dif 3118 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-exmid 4174 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |