| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > exmidel | Unicode version | ||
| Description: Excluded middle is equivalent to decidability of membership for two arbitrary sets. (Contributed by Jim Kingdon, 18-Jun-2022.) |
| Ref | Expression |
|---|---|
| exmidel |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exmidexmid 4229 |
. . 3
| |
| 2 | 1 | alrimivv 1889 |
. 2
|
| 3 | 0ex 4160 |
. . . 4
| |
| 4 | eleq1 2259 |
. . . . . 6
| |
| 5 | 4 | dcbid 839 |
. . . . 5
|
| 6 | 5 | albidv 1838 |
. . . 4
|
| 7 | 3, 6 | spcv 2858 |
. . 3
|
| 8 | exmid0el 4237 |
. . 3
| |
| 9 | 7, 8 | sylibr 134 |
. 2
|
| 10 | 2, 9 | impbii 126 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-nul 4159 ax-pow 4207 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rab 2484 df-v 2765 df-dif 3159 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-exmid 4228 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |