| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > exmidel | Unicode version | ||
| Description: Excluded middle is equivalent to decidability of membership for two arbitrary sets. (Contributed by Jim Kingdon, 18-Jun-2022.) |
| Ref | Expression |
|---|---|
| exmidel |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exmidexmid 4240 |
. . 3
| |
| 2 | 1 | alrimivv 1898 |
. 2
|
| 3 | 0ex 4171 |
. . . 4
| |
| 4 | eleq1 2268 |
. . . . . 6
| |
| 5 | 4 | dcbid 840 |
. . . . 5
|
| 6 | 5 | albidv 1847 |
. . . 4
|
| 7 | 3, 6 | spcv 2867 |
. . 3
|
| 8 | exmid0el 4248 |
. . 3
| |
| 9 | 7, 8 | sylibr 134 |
. 2
|
| 10 | 2, 9 | impbii 126 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-nul 4170 ax-pow 4218 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-rab 2493 df-v 2774 df-dif 3168 df-in 3172 df-ss 3179 df-nul 3461 df-pw 3618 df-sn 3639 df-exmid 4239 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |