ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exmidel Unicode version

Theorem exmidel 4238
Description: Excluded middle is equivalent to decidability of membership for two arbitrary sets. (Contributed by Jim Kingdon, 18-Jun-2022.)
Assertion
Ref Expression
exmidel  |-  (EXMID  <->  A. x A. yDECID  x  e.  y )
Distinct variable group:    x, y

Proof of Theorem exmidel
StepHypRef Expression
1 exmidexmid 4229 . . 3  |-  (EXMID  -> DECID  x  e.  y
)
21alrimivv 1889 . 2  |-  (EXMID  ->  A. x A. yDECID  x  e.  y )
3 0ex 4160 . . . 4  |-  (/)  e.  _V
4 eleq1 2259 . . . . . 6  |-  ( x  =  (/)  ->  ( x  e.  y  <->  (/)  e.  y ) )
54dcbid 839 . . . . 5  |-  ( x  =  (/)  ->  (DECID  x  e.  y  <-> DECID  (/) 
e.  y ) )
65albidv 1838 . . . 4  |-  ( x  =  (/)  ->  ( A. yDECID  x  e.  y  <->  A. yDECID  (/)  e.  y ) )
73, 6spcv 2858 . . 3  |-  ( A. x A. yDECID  x  e.  y  ->  A. yDECID  (/)  e.  y )
8 exmid0el 4237 . . 3  |-  (EXMID  <->  A. yDECID  (/)  e.  y )
97, 8sylibr 134 . 2  |-  ( A. x A. yDECID  x  e.  y  -> EXMID )
102, 9impbii 126 1  |-  (EXMID  <->  A. x A. yDECID  x  e.  y )
Colors of variables: wff set class
Syntax hints:    <-> wb 105  DECID wdc 835   A.wal 1362    = wceq 1364    e. wcel 2167   (/)c0 3450  EXMIDwem 4227
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-nul 4159  ax-pow 4207
This theorem depends on definitions:  df-bi 117  df-dc 836  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-rab 2484  df-v 2765  df-dif 3159  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-exmid 4228
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator