ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exmidexmid Unicode version

Theorem exmidexmid 4279
Description: EXMID implies that an arbitrary proposition is decidable. That is, EXMID captures the usual meaning of excluded middle when stated in terms of propositions.

To get other propositional statements which are equivalent to excluded middle, combine this with notnotrdc 848, peircedc 919, or condc 858.

(Contributed by Jim Kingdon, 18-Jun-2022.)

Assertion
Ref Expression
exmidexmid  |-  (EXMID  -> DECID  ph )

Proof of Theorem exmidexmid
Dummy variables  x  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssrab2 3309 . . 3  |-  { z  e.  { (/) }  |  ph }  C_  { (/) }
2 df-exmid 4278 . . . 4  |-  (EXMID  <->  A. x
( x  C_  { (/) }  -> DECID  (/) 
e.  x ) )
3 p0ex 4271 . . . . . 6  |-  { (/) }  e.  _V
43rabex 4227 . . . . 5  |-  { z  e.  { (/) }  |  ph }  e.  _V
5 sseq1 3247 . . . . . 6  |-  ( x  =  { z  e. 
{ (/) }  |  ph }  ->  ( x  C_  {
(/) }  <->  { z  e.  { (/)
}  |  ph }  C_ 
{ (/) } ) )
6 eleq2 2293 . . . . . . 7  |-  ( x  =  { z  e. 
{ (/) }  |  ph }  ->  ( (/)  e.  x  <->  (/)  e.  { z  e.  { (/)
}  |  ph }
) )
76dcbid 843 . . . . . 6  |-  ( x  =  { z  e. 
{ (/) }  |  ph }  ->  (DECID  (/)  e.  x  <-> DECID  (/)  e.  { z  e.  { (/) }  |  ph } ) )
85, 7imbi12d 234 . . . . 5  |-  ( x  =  { z  e. 
{ (/) }  |  ph }  ->  ( ( x 
C_  { (/) }  -> DECID  (/)  e.  x
)  <->  ( { z  e.  { (/) }  |  ph }  C_  { (/) }  -> DECID  (/)  e.  {
z  e.  { (/) }  |  ph } ) ) )
94, 8spcv 2897 . . . 4  |-  ( A. x ( x  C_  {
(/) }  -> DECID  (/)  e.  x )  ->  ( { z  e.  { (/) }  |  ph }  C_  { (/) }  -> DECID  (/)  e.  {
z  e.  { (/) }  |  ph } ) )
102, 9sylbi 121 . . 3  |-  (EXMID  ->  ( { z  e.  { (/)
}  |  ph }  C_ 
{ (/) }  -> DECID  (/)  e.  { z  e.  { (/) }  |  ph } ) )
111, 10mpi 15 . 2  |-  (EXMID  -> DECID  (/)  e.  { z  e.  { (/) }  |  ph } )
12 0ex 4210 . . . . 5  |-  (/)  e.  _V
1312snid 3697 . . . 4  |-  (/)  e.  { (/)
}
14 biidd 172 . . . . 5  |-  ( z  =  (/)  ->  ( ph  <->  ph ) )
1514elrab 2959 . . . 4  |-  ( (/)  e.  { z  e.  { (/)
}  |  ph }  <->  (
(/)  e.  { (/) }  /\  ph ) )
1613, 15mpbiran 946 . . 3  |-  ( (/)  e.  { z  e.  { (/)
}  |  ph }  <->  ph )
1716dcbii 845 . 2  |-  (DECID  (/)  e.  {
z  e.  { (/) }  |  ph }  <-> DECID  ph )
1811, 17sylib 122 1  |-  (EXMID  -> DECID  ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4  DECID wdc 839   A.wal 1393    = wceq 1395    e. wcel 2200   {crab 2512    C_ wss 3197   (/)c0 3491   {csn 3666  EXMIDwem 4277
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-nul 4209  ax-pow 4257
This theorem depends on definitions:  df-bi 117  df-dc 840  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-rab 2517  df-v 2801  df-dif 3199  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-exmid 4278
This theorem is referenced by:  exmidn0m  4284  exmid0el  4287  exmidel  4288  exmidundif  4289  exmidundifim  4290  exmidpw2en  7062  sbthlemi3  7114  sbthlemi5  7116  sbthlemi6  7117  exmidomniim  7296  exmidfodomrlemim  7367  exmidontriimlem1  7391  exmidapne  7434
  Copyright terms: Public domain W3C validator