| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > exmidexmid | Unicode version | ||
| Description: EXMID implies that an
arbitrary proposition is decidable. That is,
EXMID captures the usual meaning of excluded middle when stated in terms
of propositions.
To get other propositional statements which are equivalent to excluded middle, combine this with notnotrdc 845, peircedc 916, or condc 855. (Contributed by Jim Kingdon, 18-Jun-2022.) |
| Ref | Expression |
|---|---|
| exmidexmid |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssrab2 3282 |
. . 3
| |
| 2 | df-exmid 4246 |
. . . 4
| |
| 3 | p0ex 4239 |
. . . . . 6
| |
| 4 | 3 | rabex 4195 |
. . . . 5
|
| 5 | sseq1 3220 |
. . . . . 6
| |
| 6 | eleq2 2270 |
. . . . . . 7
| |
| 7 | 6 | dcbid 840 |
. . . . . 6
|
| 8 | 5, 7 | imbi12d 234 |
. . . . 5
|
| 9 | 4, 8 | spcv 2871 |
. . . 4
|
| 10 | 2, 9 | sylbi 121 |
. . 3
|
| 11 | 1, 10 | mpi 15 |
. 2
|
| 12 | 0ex 4178 |
. . . . 5
| |
| 13 | 12 | snid 3668 |
. . . 4
|
| 14 | biidd 172 |
. . . . 5
| |
| 15 | 14 | elrab 2933 |
. . . 4
|
| 16 | 13, 15 | mpbiran 943 |
. . 3
|
| 17 | 16 | dcbii 842 |
. 2
|
| 18 | 11, 17 | sylib 122 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-sep 4169 ax-nul 4177 ax-pow 4225 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-rab 2494 df-v 2775 df-dif 3172 df-in 3176 df-ss 3183 df-nul 3465 df-pw 3622 df-sn 3643 df-exmid 4246 |
| This theorem is referenced by: exmidn0m 4252 exmid0el 4255 exmidel 4256 exmidundif 4257 exmidundifim 4258 exmidpw2en 7023 sbthlemi3 7075 sbthlemi5 7077 sbthlemi6 7078 exmidomniim 7257 exmidfodomrlemim 7324 exmidontriimlem1 7348 exmidapne 7387 |
| Copyright terms: Public domain | W3C validator |