ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exmidexmid Unicode version

Theorem exmidexmid 4226
Description: EXMID implies that an arbitrary proposition is decidable. That is, EXMID captures the usual meaning of excluded middle when stated in terms of propositions.

To get other propositional statements which are equivalent to excluded middle, combine this with notnotrdc 844, peircedc 915, or condc 854.

(Contributed by Jim Kingdon, 18-Jun-2022.)

Assertion
Ref Expression
exmidexmid  |-  (EXMID  -> DECID  ph )

Proof of Theorem exmidexmid
Dummy variables  x  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssrab2 3265 . . 3  |-  { z  e.  { (/) }  |  ph }  C_  { (/) }
2 df-exmid 4225 . . . 4  |-  (EXMID  <->  A. x
( x  C_  { (/) }  -> DECID  (/) 
e.  x ) )
3 p0ex 4218 . . . . . 6  |-  { (/) }  e.  _V
43rabex 4174 . . . . 5  |-  { z  e.  { (/) }  |  ph }  e.  _V
5 sseq1 3203 . . . . . 6  |-  ( x  =  { z  e. 
{ (/) }  |  ph }  ->  ( x  C_  {
(/) }  <->  { z  e.  { (/)
}  |  ph }  C_ 
{ (/) } ) )
6 eleq2 2257 . . . . . . 7  |-  ( x  =  { z  e. 
{ (/) }  |  ph }  ->  ( (/)  e.  x  <->  (/)  e.  { z  e.  { (/)
}  |  ph }
) )
76dcbid 839 . . . . . 6  |-  ( x  =  { z  e. 
{ (/) }  |  ph }  ->  (DECID  (/)  e.  x  <-> DECID  (/)  e.  { z  e.  { (/) }  |  ph } ) )
85, 7imbi12d 234 . . . . 5  |-  ( x  =  { z  e. 
{ (/) }  |  ph }  ->  ( ( x 
C_  { (/) }  -> DECID  (/)  e.  x
)  <->  ( { z  e.  { (/) }  |  ph }  C_  { (/) }  -> DECID  (/)  e.  {
z  e.  { (/) }  |  ph } ) ) )
94, 8spcv 2855 . . . 4  |-  ( A. x ( x  C_  {
(/) }  -> DECID  (/)  e.  x )  ->  ( { z  e.  { (/) }  |  ph }  C_  { (/) }  -> DECID  (/)  e.  {
z  e.  { (/) }  |  ph } ) )
102, 9sylbi 121 . . 3  |-  (EXMID  ->  ( { z  e.  { (/)
}  |  ph }  C_ 
{ (/) }  -> DECID  (/)  e.  { z  e.  { (/) }  |  ph } ) )
111, 10mpi 15 . 2  |-  (EXMID  -> DECID  (/)  e.  { z  e.  { (/) }  |  ph } )
12 0ex 4157 . . . . 5  |-  (/)  e.  _V
1312snid 3650 . . . 4  |-  (/)  e.  { (/)
}
14 biidd 172 . . . . 5  |-  ( z  =  (/)  ->  ( ph  <->  ph ) )
1514elrab 2917 . . . 4  |-  ( (/)  e.  { z  e.  { (/)
}  |  ph }  <->  (
(/)  e.  { (/) }  /\  ph ) )
1613, 15mpbiran 942 . . 3  |-  ( (/)  e.  { z  e.  { (/)
}  |  ph }  <->  ph )
1716dcbii 841 . 2  |-  (DECID  (/)  e.  {
z  e.  { (/) }  |  ph }  <-> DECID  ph )
1811, 17sylib 122 1  |-  (EXMID  -> DECID  ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4  DECID wdc 835   A.wal 1362    = wceq 1364    e. wcel 2164   {crab 2476    C_ wss 3154   (/)c0 3447   {csn 3619  EXMIDwem 4224
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-nul 4156  ax-pow 4204
This theorem depends on definitions:  df-bi 117  df-dc 836  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-rab 2481  df-v 2762  df-dif 3156  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-exmid 4225
This theorem is referenced by:  exmidn0m  4231  exmid0el  4234  exmidel  4235  exmidundif  4236  exmidundifim  4237  exmidpw2en  6970  sbthlemi3  7020  sbthlemi5  7022  sbthlemi6  7023  exmidomniim  7202  exmidfodomrlemim  7263  exmidontriimlem1  7283  exmidapne  7322
  Copyright terms: Public domain W3C validator