![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > exmid0el | GIF version |
Description: Excluded middle is equivalent to decidability of ∅ being an element of an arbitrary set. (Contributed by Jim Kingdon, 18-Jun-2022.) |
Ref | Expression |
---|---|
exmid0el | ⊢ (EXMID ↔ ∀𝑥DECID ∅ ∈ 𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exmidexmid 4226 | . . 3 ⊢ (EXMID → DECID ∅ ∈ 𝑥) | |
2 | 1 | alrimiv 1885 | . 2 ⊢ (EXMID → ∀𝑥DECID ∅ ∈ 𝑥) |
3 | ax-1 6 | . . . 4 ⊢ (DECID ∅ ∈ 𝑥 → (𝑥 ⊆ {∅} → DECID ∅ ∈ 𝑥)) | |
4 | 3 | alimi 1466 | . . 3 ⊢ (∀𝑥DECID ∅ ∈ 𝑥 → ∀𝑥(𝑥 ⊆ {∅} → DECID ∅ ∈ 𝑥)) |
5 | df-exmid 4225 | . . 3 ⊢ (EXMID ↔ ∀𝑥(𝑥 ⊆ {∅} → DECID ∅ ∈ 𝑥)) | |
6 | 4, 5 | sylibr 134 | . 2 ⊢ (∀𝑥DECID ∅ ∈ 𝑥 → EXMID) |
7 | 2, 6 | impbii 126 | 1 ⊢ (EXMID ↔ ∀𝑥DECID ∅ ∈ 𝑥) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 DECID wdc 835 ∀wal 1362 ∈ wcel 2164 ⊆ wss 3154 ∅c0 3447 {csn 3619 EXMIDwem 4224 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-nul 4156 ax-pow 4204 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-rab 2481 df-v 2762 df-dif 3156 df-in 3160 df-ss 3167 df-nul 3448 df-pw 3604 df-sn 3625 df-exmid 4225 |
This theorem is referenced by: exmidel 4235 |
Copyright terms: Public domain | W3C validator |