![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > exmid0el | GIF version |
Description: Excluded middle is equivalent to decidability of ∅ being an element of an arbitrary set. (Contributed by Jim Kingdon, 18-Jun-2022.) |
Ref | Expression |
---|---|
exmid0el | ⊢ (EXMID ↔ ∀𝑥DECID ∅ ∈ 𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exmidexmid 4198 | . . 3 ⊢ (EXMID → DECID ∅ ∈ 𝑥) | |
2 | 1 | alrimiv 1874 | . 2 ⊢ (EXMID → ∀𝑥DECID ∅ ∈ 𝑥) |
3 | ax-1 6 | . . . 4 ⊢ (DECID ∅ ∈ 𝑥 → (𝑥 ⊆ {∅} → DECID ∅ ∈ 𝑥)) | |
4 | 3 | alimi 1455 | . . 3 ⊢ (∀𝑥DECID ∅ ∈ 𝑥 → ∀𝑥(𝑥 ⊆ {∅} → DECID ∅ ∈ 𝑥)) |
5 | df-exmid 4197 | . . 3 ⊢ (EXMID ↔ ∀𝑥(𝑥 ⊆ {∅} → DECID ∅ ∈ 𝑥)) | |
6 | 4, 5 | sylibr 134 | . 2 ⊢ (∀𝑥DECID ∅ ∈ 𝑥 → EXMID) |
7 | 2, 6 | impbii 126 | 1 ⊢ (EXMID ↔ ∀𝑥DECID ∅ ∈ 𝑥) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 DECID wdc 834 ∀wal 1351 ∈ wcel 2148 ⊆ wss 3131 ∅c0 3424 {csn 3594 EXMIDwem 4196 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-nul 4131 ax-pow 4176 |
This theorem depends on definitions: df-bi 117 df-dc 835 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-rab 2464 df-v 2741 df-dif 3133 df-in 3137 df-ss 3144 df-nul 3425 df-pw 3579 df-sn 3600 df-exmid 4197 |
This theorem is referenced by: exmidel 4207 |
Copyright terms: Public domain | W3C validator |