| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > exmid0el | GIF version | ||
| Description: Excluded middle is equivalent to decidability of ∅ being an element of an arbitrary set. (Contributed by Jim Kingdon, 18-Jun-2022.) | 
| Ref | Expression | 
|---|---|
| exmid0el | ⊢ (EXMID ↔ ∀𝑥DECID ∅ ∈ 𝑥) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | exmidexmid 4229 | . . 3 ⊢ (EXMID → DECID ∅ ∈ 𝑥) | |
| 2 | 1 | alrimiv 1888 | . 2 ⊢ (EXMID → ∀𝑥DECID ∅ ∈ 𝑥) | 
| 3 | ax-1 6 | . . . 4 ⊢ (DECID ∅ ∈ 𝑥 → (𝑥 ⊆ {∅} → DECID ∅ ∈ 𝑥)) | |
| 4 | 3 | alimi 1469 | . . 3 ⊢ (∀𝑥DECID ∅ ∈ 𝑥 → ∀𝑥(𝑥 ⊆ {∅} → DECID ∅ ∈ 𝑥)) | 
| 5 | df-exmid 4228 | . . 3 ⊢ (EXMID ↔ ∀𝑥(𝑥 ⊆ {∅} → DECID ∅ ∈ 𝑥)) | |
| 6 | 4, 5 | sylibr 134 | . 2 ⊢ (∀𝑥DECID ∅ ∈ 𝑥 → EXMID) | 
| 7 | 2, 6 | impbii 126 | 1 ⊢ (EXMID ↔ ∀𝑥DECID ∅ ∈ 𝑥) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ↔ wb 105 DECID wdc 835 ∀wal 1362 ∈ wcel 2167 ⊆ wss 3157 ∅c0 3450 {csn 3622 EXMIDwem 4227 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-nul 4159 ax-pow 4207 | 
| This theorem depends on definitions: df-bi 117 df-dc 836 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rab 2484 df-v 2765 df-dif 3159 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-exmid 4228 | 
| This theorem is referenced by: exmidel 4238 | 
| Copyright terms: Public domain | W3C validator |