| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > exmid0el | GIF version | ||
| Description: Excluded middle is equivalent to decidability of ∅ being an element of an arbitrary set. (Contributed by Jim Kingdon, 18-Jun-2022.) |
| Ref | Expression |
|---|---|
| exmid0el | ⊢ (EXMID ↔ ∀𝑥DECID ∅ ∈ 𝑥) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exmidexmid 4245 | . . 3 ⊢ (EXMID → DECID ∅ ∈ 𝑥) | |
| 2 | 1 | alrimiv 1898 | . 2 ⊢ (EXMID → ∀𝑥DECID ∅ ∈ 𝑥) |
| 3 | ax-1 6 | . . . 4 ⊢ (DECID ∅ ∈ 𝑥 → (𝑥 ⊆ {∅} → DECID ∅ ∈ 𝑥)) | |
| 4 | 3 | alimi 1479 | . . 3 ⊢ (∀𝑥DECID ∅ ∈ 𝑥 → ∀𝑥(𝑥 ⊆ {∅} → DECID ∅ ∈ 𝑥)) |
| 5 | df-exmid 4244 | . . 3 ⊢ (EXMID ↔ ∀𝑥(𝑥 ⊆ {∅} → DECID ∅ ∈ 𝑥)) | |
| 6 | 4, 5 | sylibr 134 | . 2 ⊢ (∀𝑥DECID ∅ ∈ 𝑥 → EXMID) |
| 7 | 2, 6 | impbii 126 | 1 ⊢ (EXMID ↔ ∀𝑥DECID ∅ ∈ 𝑥) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 DECID wdc 836 ∀wal 1371 ∈ wcel 2177 ⊆ wss 3168 ∅c0 3462 {csn 3635 EXMIDwem 4243 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-sep 4167 ax-nul 4175 ax-pow 4223 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-rab 2494 df-v 2775 df-dif 3170 df-in 3174 df-ss 3181 df-nul 3463 df-pw 3620 df-sn 3641 df-exmid 4244 |
| This theorem is referenced by: exmidel 4254 |
| Copyright terms: Public domain | W3C validator |