ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exmid0el GIF version

Theorem exmid0el 4233
Description: Excluded middle is equivalent to decidability of being an element of an arbitrary set. (Contributed by Jim Kingdon, 18-Jun-2022.)
Assertion
Ref Expression
exmid0el (EXMID ↔ ∀𝑥DECID ∅ ∈ 𝑥)

Proof of Theorem exmid0el
StepHypRef Expression
1 exmidexmid 4225 . . 3 (EXMIDDECID ∅ ∈ 𝑥)
21alrimiv 1885 . 2 (EXMID → ∀𝑥DECID ∅ ∈ 𝑥)
3 ax-1 6 . . . 4 (DECID ∅ ∈ 𝑥 → (𝑥 ⊆ {∅} → DECID ∅ ∈ 𝑥))
43alimi 1466 . . 3 (∀𝑥DECID ∅ ∈ 𝑥 → ∀𝑥(𝑥 ⊆ {∅} → DECID ∅ ∈ 𝑥))
5 df-exmid 4224 . . 3 (EXMID ↔ ∀𝑥(𝑥 ⊆ {∅} → DECID ∅ ∈ 𝑥))
64, 5sylibr 134 . 2 (∀𝑥DECID ∅ ∈ 𝑥EXMID)
72, 6impbii 126 1 (EXMID ↔ ∀𝑥DECID ∅ ∈ 𝑥)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  DECID wdc 835  wal 1362  wcel 2164  wss 3153  c0 3446  {csn 3618  EXMIDwem 4223
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-nul 4155  ax-pow 4203
This theorem depends on definitions:  df-bi 117  df-dc 836  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-rab 2481  df-v 2762  df-dif 3155  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-exmid 4224
This theorem is referenced by:  exmidel  4234
  Copyright terms: Public domain W3C validator