ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exmid0el GIF version

Theorem exmid0el 4183
Description: Excluded middle is equivalent to decidability of being an element of an arbitrary set. (Contributed by Jim Kingdon, 18-Jun-2022.)
Assertion
Ref Expression
exmid0el (EXMID ↔ ∀𝑥DECID ∅ ∈ 𝑥)

Proof of Theorem exmid0el
StepHypRef Expression
1 exmidexmid 4175 . . 3 (EXMIDDECID ∅ ∈ 𝑥)
21alrimiv 1862 . 2 (EXMID → ∀𝑥DECID ∅ ∈ 𝑥)
3 ax-1 6 . . . 4 (DECID ∅ ∈ 𝑥 → (𝑥 ⊆ {∅} → DECID ∅ ∈ 𝑥))
43alimi 1443 . . 3 (∀𝑥DECID ∅ ∈ 𝑥 → ∀𝑥(𝑥 ⊆ {∅} → DECID ∅ ∈ 𝑥))
5 df-exmid 4174 . . 3 (EXMID ↔ ∀𝑥(𝑥 ⊆ {∅} → DECID ∅ ∈ 𝑥))
64, 5sylibr 133 . 2 (∀𝑥DECID ∅ ∈ 𝑥EXMID)
72, 6impbii 125 1 (EXMID ↔ ∀𝑥DECID ∅ ∈ 𝑥)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104  DECID wdc 824  wal 1341  wcel 2136  wss 3116  c0 3409  {csn 3576  EXMIDwem 4173
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-nul 4108  ax-pow 4153
This theorem depends on definitions:  df-bi 116  df-dc 825  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-rab 2453  df-v 2728  df-dif 3118  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-exmid 4174
This theorem is referenced by:  exmidel  4184
  Copyright terms: Public domain W3C validator