ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exmid0el GIF version

Theorem exmid0el 4135
Description: Excluded middle is equivalent to decidability of being an element of an arbitrary set. (Contributed by Jim Kingdon, 18-Jun-2022.)
Assertion
Ref Expression
exmid0el (EXMID ↔ ∀𝑥DECID ∅ ∈ 𝑥)

Proof of Theorem exmid0el
StepHypRef Expression
1 exmidexmid 4128 . . 3 (EXMIDDECID ∅ ∈ 𝑥)
21alrimiv 1847 . 2 (EXMID → ∀𝑥DECID ∅ ∈ 𝑥)
3 ax-1 6 . . . 4 (DECID ∅ ∈ 𝑥 → (𝑥 ⊆ {∅} → DECID ∅ ∈ 𝑥))
43alimi 1432 . . 3 (∀𝑥DECID ∅ ∈ 𝑥 → ∀𝑥(𝑥 ⊆ {∅} → DECID ∅ ∈ 𝑥))
5 df-exmid 4127 . . 3 (EXMID ↔ ∀𝑥(𝑥 ⊆ {∅} → DECID ∅ ∈ 𝑥))
64, 5sylibr 133 . 2 (∀𝑥DECID ∅ ∈ 𝑥EXMID)
72, 6impbii 125 1 (EXMID ↔ ∀𝑥DECID ∅ ∈ 𝑥)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104  DECID wdc 820  wal 1330  wcel 1481  wss 3076  c0 3368  {csn 3532  EXMIDwem 4126
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-nul 4062  ax-pow 4106
This theorem depends on definitions:  df-bi 116  df-dc 821  df-tru 1335  df-nf 1438  df-sb 1737  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-rab 2426  df-v 2691  df-dif 3078  df-in 3082  df-ss 3089  df-nul 3369  df-pw 3517  df-sn 3538  df-exmid 4127
This theorem is referenced by:  exmidel  4136
  Copyright terms: Public domain W3C validator