![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > exmid0el | GIF version |
Description: Excluded middle is equivalent to decidability of ∅ being an element of an arbitrary set. (Contributed by Jim Kingdon, 18-Jun-2022.) |
Ref | Expression |
---|---|
exmid0el | ⊢ (EXMID ↔ ∀𝑥DECID ∅ ∈ 𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exmidexmid 4031 | . . 3 ⊢ (EXMID → DECID ∅ ∈ 𝑥) | |
2 | 1 | alrimiv 1802 | . 2 ⊢ (EXMID → ∀𝑥DECID ∅ ∈ 𝑥) |
3 | ax-1 5 | . . . 4 ⊢ (DECID ∅ ∈ 𝑥 → (𝑥 ⊆ {∅} → DECID ∅ ∈ 𝑥)) | |
4 | 3 | alimi 1389 | . . 3 ⊢ (∀𝑥DECID ∅ ∈ 𝑥 → ∀𝑥(𝑥 ⊆ {∅} → DECID ∅ ∈ 𝑥)) |
5 | df-exmid 4030 | . . 3 ⊢ (EXMID ↔ ∀𝑥(𝑥 ⊆ {∅} → DECID ∅ ∈ 𝑥)) | |
6 | 4, 5 | sylibr 132 | . 2 ⊢ (∀𝑥DECID ∅ ∈ 𝑥 → EXMID) |
7 | 2, 6 | impbii 124 | 1 ⊢ (EXMID ↔ ∀𝑥DECID ∅ ∈ 𝑥) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 103 DECID wdc 780 ∀wal 1287 ∈ wcel 1438 ⊆ wss 2999 ∅c0 3286 {csn 3446 EXMIDwem 4029 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 579 ax-in2 580 ax-io 665 ax-5 1381 ax-7 1382 ax-gen 1383 ax-ie1 1427 ax-ie2 1428 ax-8 1440 ax-10 1441 ax-11 1442 ax-i12 1443 ax-bndl 1444 ax-4 1445 ax-14 1450 ax-17 1464 ax-i9 1468 ax-ial 1472 ax-i5r 1473 ax-ext 2070 ax-sep 3957 ax-nul 3965 ax-pow 4009 |
This theorem depends on definitions: df-bi 115 df-dc 781 df-tru 1292 df-nf 1395 df-sb 1693 df-clab 2075 df-cleq 2081 df-clel 2084 df-nfc 2217 df-rab 2368 df-v 2621 df-dif 3001 df-in 3005 df-ss 3012 df-nul 3287 df-pw 3431 df-sn 3452 df-exmid 4030 |
This theorem is referenced by: exmidel 4034 |
Copyright terms: Public domain | W3C validator |