Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fintm | GIF version |
Description: Function into an intersection. (Contributed by Jim Kingdon, 28-Dec-2018.) |
Ref | Expression |
---|---|
fintm.1 | ⊢ ∃𝑥 𝑥 ∈ 𝐵 |
Ref | Expression |
---|---|
fintm | ⊢ (𝐹:𝐴⟶∩ 𝐵 ↔ ∀𝑥 ∈ 𝐵 𝐹:𝐴⟶𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssint 3840 | . . . 4 ⊢ (ran 𝐹 ⊆ ∩ 𝐵 ↔ ∀𝑥 ∈ 𝐵 ran 𝐹 ⊆ 𝑥) | |
2 | 1 | anbi2i 453 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ ∩ 𝐵) ↔ (𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐵 ran 𝐹 ⊆ 𝑥)) |
3 | fintm.1 | . . . 4 ⊢ ∃𝑥 𝑥 ∈ 𝐵 | |
4 | r19.28mv 3501 | . . . 4 ⊢ (∃𝑥 𝑥 ∈ 𝐵 → (∀𝑥 ∈ 𝐵 (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝑥) ↔ (𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐵 ran 𝐹 ⊆ 𝑥))) | |
5 | 3, 4 | ax-mp 5 | . . 3 ⊢ (∀𝑥 ∈ 𝐵 (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝑥) ↔ (𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐵 ran 𝐹 ⊆ 𝑥)) |
6 | 2, 5 | bitr4i 186 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ ∩ 𝐵) ↔ ∀𝑥 ∈ 𝐵 (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝑥)) |
7 | df-f 5192 | . 2 ⊢ (𝐹:𝐴⟶∩ 𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ ∩ 𝐵)) | |
8 | df-f 5192 | . . 3 ⊢ (𝐹:𝐴⟶𝑥 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝑥)) | |
9 | 8 | ralbii 2472 | . 2 ⊢ (∀𝑥 ∈ 𝐵 𝐹:𝐴⟶𝑥 ↔ ∀𝑥 ∈ 𝐵 (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝑥)) |
10 | 6, 7, 9 | 3bitr4i 211 | 1 ⊢ (𝐹:𝐴⟶∩ 𝐵 ↔ ∀𝑥 ∈ 𝐵 𝐹:𝐴⟶𝑥) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 ↔ wb 104 ∃wex 1480 ∈ wcel 2136 ∀wral 2444 ⊆ wss 3116 ∩ cint 3824 ran crn 4605 Fn wfn 5183 ⟶wf 5184 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-v 2728 df-in 3122 df-ss 3129 df-int 3825 df-f 5192 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |