| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > fintm | GIF version | ||
| Description: Function into an intersection. (Contributed by Jim Kingdon, 28-Dec-2018.) | 
| Ref | Expression | 
|---|---|
| fintm.1 | ⊢ ∃𝑥 𝑥 ∈ 𝐵 | 
| Ref | Expression | 
|---|---|
| fintm | ⊢ (𝐹:𝐴⟶∩ 𝐵 ↔ ∀𝑥 ∈ 𝐵 𝐹:𝐴⟶𝑥) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ssint 3890 | . . . 4 ⊢ (ran 𝐹 ⊆ ∩ 𝐵 ↔ ∀𝑥 ∈ 𝐵 ran 𝐹 ⊆ 𝑥) | |
| 2 | 1 | anbi2i 457 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ ∩ 𝐵) ↔ (𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐵 ran 𝐹 ⊆ 𝑥)) | 
| 3 | fintm.1 | . . . 4 ⊢ ∃𝑥 𝑥 ∈ 𝐵 | |
| 4 | r19.28mv 3543 | . . . 4 ⊢ (∃𝑥 𝑥 ∈ 𝐵 → (∀𝑥 ∈ 𝐵 (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝑥) ↔ (𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐵 ran 𝐹 ⊆ 𝑥))) | |
| 5 | 3, 4 | ax-mp 5 | . . 3 ⊢ (∀𝑥 ∈ 𝐵 (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝑥) ↔ (𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐵 ran 𝐹 ⊆ 𝑥)) | 
| 6 | 2, 5 | bitr4i 187 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ ∩ 𝐵) ↔ ∀𝑥 ∈ 𝐵 (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝑥)) | 
| 7 | df-f 5262 | . 2 ⊢ (𝐹:𝐴⟶∩ 𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ ∩ 𝐵)) | |
| 8 | df-f 5262 | . . 3 ⊢ (𝐹:𝐴⟶𝑥 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝑥)) | |
| 9 | 8 | ralbii 2503 | . 2 ⊢ (∀𝑥 ∈ 𝐵 𝐹:𝐴⟶𝑥 ↔ ∀𝑥 ∈ 𝐵 (𝐹 Fn 𝐴 ∧ ran 𝐹 ⊆ 𝑥)) | 
| 10 | 6, 7, 9 | 3bitr4i 212 | 1 ⊢ (𝐹:𝐴⟶∩ 𝐵 ↔ ∀𝑥 ∈ 𝐵 𝐹:𝐴⟶𝑥) | 
| Colors of variables: wff set class | 
| Syntax hints: ∧ wa 104 ↔ wb 105 ∃wex 1506 ∈ wcel 2167 ∀wral 2475 ⊆ wss 3157 ∩ cint 3874 ran crn 4664 Fn wfn 5253 ⟶wf 5254 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-v 2765 df-in 3163 df-ss 3170 df-int 3875 df-f 5262 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |