ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fintm GIF version

Theorem fintm 5483
Description: Function into an intersection. (Contributed by Jim Kingdon, 28-Dec-2018.)
Hypothesis
Ref Expression
fintm.1 𝑥 𝑥𝐵
Assertion
Ref Expression
fintm (𝐹:𝐴 𝐵 ↔ ∀𝑥𝐵 𝐹:𝐴𝑥)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐹

Proof of Theorem fintm
StepHypRef Expression
1 ssint 3915 . . . 4 (ran 𝐹 𝐵 ↔ ∀𝑥𝐵 ran 𝐹𝑥)
21anbi2i 457 . . 3 ((𝐹 Fn 𝐴 ∧ ran 𝐹 𝐵) ↔ (𝐹 Fn 𝐴 ∧ ∀𝑥𝐵 ran 𝐹𝑥))
3 fintm.1 . . . 4 𝑥 𝑥𝐵
4 r19.28mv 3561 . . . 4 (∃𝑥 𝑥𝐵 → (∀𝑥𝐵 (𝐹 Fn 𝐴 ∧ ran 𝐹𝑥) ↔ (𝐹 Fn 𝐴 ∧ ∀𝑥𝐵 ran 𝐹𝑥)))
53, 4ax-mp 5 . . 3 (∀𝑥𝐵 (𝐹 Fn 𝐴 ∧ ran 𝐹𝑥) ↔ (𝐹 Fn 𝐴 ∧ ∀𝑥𝐵 ran 𝐹𝑥))
62, 5bitr4i 187 . 2 ((𝐹 Fn 𝐴 ∧ ran 𝐹 𝐵) ↔ ∀𝑥𝐵 (𝐹 Fn 𝐴 ∧ ran 𝐹𝑥))
7 df-f 5294 . 2 (𝐹:𝐴 𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 𝐵))
8 df-f 5294 . . 3 (𝐹:𝐴𝑥 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹𝑥))
98ralbii 2514 . 2 (∀𝑥𝐵 𝐹:𝐴𝑥 ↔ ∀𝑥𝐵 (𝐹 Fn 𝐴 ∧ ran 𝐹𝑥))
106, 7, 93bitr4i 212 1 (𝐹:𝐴 𝐵 ↔ ∀𝑥𝐵 𝐹:𝐴𝑥)
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105  wex 1516  wcel 2178  wral 2486  wss 3174   cint 3899  ran crn 4694   Fn wfn 5285  wf 5286
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-v 2778  df-in 3180  df-ss 3187  df-int 3900  df-f 5294
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator