ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fintm GIF version

Theorem fintm 5461
Description: Function into an intersection. (Contributed by Jim Kingdon, 28-Dec-2018.)
Hypothesis
Ref Expression
fintm.1 𝑥 𝑥𝐵
Assertion
Ref Expression
fintm (𝐹:𝐴 𝐵 ↔ ∀𝑥𝐵 𝐹:𝐴𝑥)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐹

Proof of Theorem fintm
StepHypRef Expression
1 ssint 3901 . . . 4 (ran 𝐹 𝐵 ↔ ∀𝑥𝐵 ran 𝐹𝑥)
21anbi2i 457 . . 3 ((𝐹 Fn 𝐴 ∧ ran 𝐹 𝐵) ↔ (𝐹 Fn 𝐴 ∧ ∀𝑥𝐵 ran 𝐹𝑥))
3 fintm.1 . . . 4 𝑥 𝑥𝐵
4 r19.28mv 3553 . . . 4 (∃𝑥 𝑥𝐵 → (∀𝑥𝐵 (𝐹 Fn 𝐴 ∧ ran 𝐹𝑥) ↔ (𝐹 Fn 𝐴 ∧ ∀𝑥𝐵 ran 𝐹𝑥)))
53, 4ax-mp 5 . . 3 (∀𝑥𝐵 (𝐹 Fn 𝐴 ∧ ran 𝐹𝑥) ↔ (𝐹 Fn 𝐴 ∧ ∀𝑥𝐵 ran 𝐹𝑥))
62, 5bitr4i 187 . 2 ((𝐹 Fn 𝐴 ∧ ran 𝐹 𝐵) ↔ ∀𝑥𝐵 (𝐹 Fn 𝐴 ∧ ran 𝐹𝑥))
7 df-f 5275 . 2 (𝐹:𝐴 𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 𝐵))
8 df-f 5275 . . 3 (𝐹:𝐴𝑥 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹𝑥))
98ralbii 2512 . 2 (∀𝑥𝐵 𝐹:𝐴𝑥 ↔ ∀𝑥𝐵 (𝐹 Fn 𝐴 ∧ ran 𝐹𝑥))
106, 7, 93bitr4i 212 1 (𝐹:𝐴 𝐵 ↔ ∀𝑥𝐵 𝐹:𝐴𝑥)
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105  wex 1515  wcel 2176  wral 2484  wss 3166   cint 3885  ran crn 4676   Fn wfn 5266  wf 5267
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-v 2774  df-in 3172  df-ss 3179  df-int 3886  df-f 5275
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator