Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ssint | Unicode version |
Description: Subclass of a class intersection. Theorem 5.11(viii) of [Monk1] p. 52 and its converse. (Contributed by NM, 14-Oct-1999.) |
Ref | Expression |
---|---|
ssint |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfss3 3132 | . 2 | |
2 | vex 2729 | . . . 4 | |
3 | 2 | elint2 3831 | . . 3 |
4 | 3 | ralbii 2472 | . 2 |
5 | ralcom 2629 | . . 3 | |
6 | dfss3 3132 | . . . 4 | |
7 | 6 | ralbii 2472 | . . 3 |
8 | 5, 7 | bitr4i 186 | . 2 |
9 | 1, 4, 8 | 3bitri 205 | 1 |
Colors of variables: wff set class |
Syntax hints: wb 104 wcel 2136 wral 2444 wss 3116 cint 3824 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-v 2728 df-in 3122 df-ss 3129 df-int 3825 |
This theorem is referenced by: ssintab 3841 ssintub 3842 iinpw 3956 trint 4095 fintm 5373 bj-ssom 13818 |
Copyright terms: Public domain | W3C validator |