ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssint Unicode version

Theorem ssint 3886
Description: Subclass of a class intersection. Theorem 5.11(viii) of [Monk1] p. 52 and its converse. (Contributed by NM, 14-Oct-1999.)
Assertion
Ref Expression
ssint  |-  ( A 
C_  |^| B  <->  A. x  e.  B  A  C_  x
)
Distinct variable groups:    x, A    x, B

Proof of Theorem ssint
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 dfss3 3169 . 2  |-  ( A 
C_  |^| B  <->  A. y  e.  A  y  e.  |^| B )
2 vex 2763 . . . 4  |-  y  e. 
_V
32elint2 3877 . . 3  |-  ( y  e.  |^| B  <->  A. x  e.  B  y  e.  x )
43ralbii 2500 . 2  |-  ( A. y  e.  A  y  e.  |^| B  <->  A. y  e.  A  A. x  e.  B  y  e.  x )
5 ralcom 2657 . . 3  |-  ( A. y  e.  A  A. x  e.  B  y  e.  x  <->  A. x  e.  B  A. y  e.  A  y  e.  x )
6 dfss3 3169 . . . 4  |-  ( A 
C_  x  <->  A. y  e.  A  y  e.  x )
76ralbii 2500 . . 3  |-  ( A. x  e.  B  A  C_  x  <->  A. x  e.  B  A. y  e.  A  y  e.  x )
85, 7bitr4i 187 . 2  |-  ( A. y  e.  A  A. x  e.  B  y  e.  x  <->  A. x  e.  B  A  C_  x )
91, 4, 83bitri 206 1  |-  ( A 
C_  |^| B  <->  A. x  e.  B  A  C_  x
)
Colors of variables: wff set class
Syntax hints:    <-> wb 105    e. wcel 2164   A.wral 2472    C_ wss 3153   |^|cint 3870
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-v 2762  df-in 3159  df-ss 3166  df-int 3871
This theorem is referenced by:  ssintab  3887  ssintub  3888  iinpw  4003  trint  4142  fintm  5439  bj-ssom  15428
  Copyright terms: Public domain W3C validator