ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssint Unicode version

Theorem ssint 3938
Description: Subclass of a class intersection. Theorem 5.11(viii) of [Monk1] p. 52 and its converse. (Contributed by NM, 14-Oct-1999.)
Assertion
Ref Expression
ssint  |-  ( A 
C_  |^| B  <->  A. x  e.  B  A  C_  x
)
Distinct variable groups:    x, A    x, B

Proof of Theorem ssint
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 dfss3 3213 . 2  |-  ( A 
C_  |^| B  <->  A. y  e.  A  y  e.  |^| B )
2 vex 2802 . . . 4  |-  y  e. 
_V
32elint2 3929 . . 3  |-  ( y  e.  |^| B  <->  A. x  e.  B  y  e.  x )
43ralbii 2536 . 2  |-  ( A. y  e.  A  y  e.  |^| B  <->  A. y  e.  A  A. x  e.  B  y  e.  x )
5 ralcom 2694 . . 3  |-  ( A. y  e.  A  A. x  e.  B  y  e.  x  <->  A. x  e.  B  A. y  e.  A  y  e.  x )
6 dfss3 3213 . . . 4  |-  ( A 
C_  x  <->  A. y  e.  A  y  e.  x )
76ralbii 2536 . . 3  |-  ( A. x  e.  B  A  C_  x  <->  A. x  e.  B  A. y  e.  A  y  e.  x )
85, 7bitr4i 187 . 2  |-  ( A. y  e.  A  A. x  e.  B  y  e.  x  <->  A. x  e.  B  A  C_  x )
91, 4, 83bitri 206 1  |-  ( A 
C_  |^| B  <->  A. x  e.  B  A  C_  x
)
Colors of variables: wff set class
Syntax hints:    <-> wb 105    e. wcel 2200   A.wral 2508    C_ wss 3197   |^|cint 3922
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-v 2801  df-in 3203  df-ss 3210  df-int 3923
This theorem is referenced by:  ssintab  3939  ssintub  3940  iinpw  4055  trint  4196  fintm  5510  bj-ssom  16257
  Copyright terms: Public domain W3C validator