Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > freq2 | GIF version |
Description: Equality theorem for the well-founded predicate. (Contributed by NM, 3-Apr-1994.) |
Ref | Expression |
---|---|
freq2 | ⊢ (𝐴 = 𝐵 → (𝑅 Fr 𝐴 ↔ 𝑅 Fr 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frforeq2 4339 | . . 3 ⊢ (𝐴 = 𝐵 → ( FrFor 𝑅𝐴𝑠 ↔ FrFor 𝑅𝐵𝑠)) | |
2 | 1 | albidv 1822 | . 2 ⊢ (𝐴 = 𝐵 → (∀𝑠 FrFor 𝑅𝐴𝑠 ↔ ∀𝑠 FrFor 𝑅𝐵𝑠)) |
3 | df-frind 4326 | . 2 ⊢ (𝑅 Fr 𝐴 ↔ ∀𝑠 FrFor 𝑅𝐴𝑠) | |
4 | df-frind 4326 | . 2 ⊢ (𝑅 Fr 𝐵 ↔ ∀𝑠 FrFor 𝑅𝐵𝑠) | |
5 | 2, 3, 4 | 3bitr4g 223 | 1 ⊢ (𝐴 = 𝐵 → (𝑅 Fr 𝐴 ↔ 𝑅 Fr 𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 ∀wal 1351 = wceq 1353 FrFor wfrfor 4321 Fr wfr 4322 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-ext 2157 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ral 2458 df-in 3133 df-ss 3140 df-frfor 4325 df-frind 4326 |
This theorem is referenced by: weeq2 4351 |
Copyright terms: Public domain | W3C validator |