ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  freq2 GIF version

Theorem freq2 4324
Description: Equality theorem for the well-founded predicate. (Contributed by NM, 3-Apr-1994.)
Assertion
Ref Expression
freq2 (𝐴 = 𝐵 → (𝑅 Fr 𝐴𝑅 Fr 𝐵))

Proof of Theorem freq2
Dummy variable 𝑠 is distinct from all other variables.
StepHypRef Expression
1 frforeq2 4323 . . 3 (𝐴 = 𝐵 → ( FrFor 𝑅𝐴𝑠 ↔ FrFor 𝑅𝐵𝑠))
21albidv 1812 . 2 (𝐴 = 𝐵 → (∀𝑠 FrFor 𝑅𝐴𝑠 ↔ ∀𝑠 FrFor 𝑅𝐵𝑠))
3 df-frind 4310 . 2 (𝑅 Fr 𝐴 ↔ ∀𝑠 FrFor 𝑅𝐴𝑠)
4 df-frind 4310 . 2 (𝑅 Fr 𝐵 ↔ ∀𝑠 FrFor 𝑅𝐵𝑠)
52, 3, 43bitr4g 222 1 (𝐴 = 𝐵 → (𝑅 Fr 𝐴𝑅 Fr 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104  wal 1341   = wceq 1343   FrFor wfrfor 4305   Fr wfr 4306
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-in 3122  df-ss 3129  df-frfor 4309  df-frind 4310
This theorem is referenced by:  weeq2  4335
  Copyright terms: Public domain W3C validator