| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > freq2 | GIF version | ||
| Description: Equality theorem for the well-founded predicate. (Contributed by NM, 3-Apr-1994.) |
| Ref | Expression |
|---|---|
| freq2 | ⊢ (𝐴 = 𝐵 → (𝑅 Fr 𝐴 ↔ 𝑅 Fr 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frforeq2 4400 | . . 3 ⊢ (𝐴 = 𝐵 → ( FrFor 𝑅𝐴𝑠 ↔ FrFor 𝑅𝐵𝑠)) | |
| 2 | 1 | albidv 1848 | . 2 ⊢ (𝐴 = 𝐵 → (∀𝑠 FrFor 𝑅𝐴𝑠 ↔ ∀𝑠 FrFor 𝑅𝐵𝑠)) |
| 3 | df-frind 4387 | . 2 ⊢ (𝑅 Fr 𝐴 ↔ ∀𝑠 FrFor 𝑅𝐴𝑠) | |
| 4 | df-frind 4387 | . 2 ⊢ (𝑅 Fr 𝐵 ↔ ∀𝑠 FrFor 𝑅𝐵𝑠) | |
| 5 | 2, 3, 4 | 3bitr4g 223 | 1 ⊢ (𝐴 = 𝐵 → (𝑅 Fr 𝐴 ↔ 𝑅 Fr 𝐵)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∀wal 1371 = wceq 1373 FrFor wfrfor 4382 Fr wfr 4383 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-in 3176 df-ss 3183 df-frfor 4386 df-frind 4387 |
| This theorem is referenced by: weeq2 4412 |
| Copyright terms: Public domain | W3C validator |