Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 2exeu | Unicode version |
Description: Double existential uniqueness implies double unique existential quantification. (Contributed by NM, 3-Dec-2001.) |
Ref | Expression |
---|---|
2exeu |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | excom 1652 | . . . . 5 | |
2 | hbe1 1483 | . . . . . . . 8 | |
3 | 2 | hbmo 2053 | . . . . . . 7 |
4 | 3 | 19.41h 1673 | . . . . . 6 |
5 | 19.8a 1578 | . . . . . . . . 9 | |
6 | 5 | moimi 2079 | . . . . . . . 8 |
7 | 6 | anim2i 340 | . . . . . . 7 |
8 | 7 | eximi 1588 | . . . . . 6 |
9 | 4, 8 | sylbir 134 | . . . . 5 |
10 | 1, 9 | sylanb 282 | . . . 4 |
11 | simpl 108 | . . . . . 6 | |
12 | 11 | moimi 2079 | . . . . 5 |
13 | 12 | adantl 275 | . . . 4 |
14 | 10, 13 | anim12i 336 | . . 3 |
15 | 14 | ancoms 266 | . 2 |
16 | eu5 2061 | . . 3 | |
17 | eu5 2061 | . . 3 | |
18 | 16, 17 | anbi12i 456 | . 2 |
19 | eu5 2061 | . . 3 | |
20 | eu5 2061 | . . . . 5 | |
21 | 20 | exbii 1593 | . . . 4 |
22 | 20 | mobii 2051 | . . . 4 |
23 | 21, 22 | anbi12i 456 | . . 3 |
24 | 19, 23 | bitri 183 | . 2 |
25 | 15, 18, 24 | 3imtr4i 200 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wex 1480 weu 2014 wmo 2015 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |