ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ifbieq2i Unicode version

Theorem ifbieq2i 3549
Description: Equivalence/equality inference for conditional operators. (Contributed by Paul Chapman, 22-Jun-2011.)
Hypotheses
Ref Expression
ifbieq2i.1  |-  ( ph  <->  ps )
ifbieq2i.2  |-  A  =  B
Assertion
Ref Expression
ifbieq2i  |-  if (
ph ,  C ,  A )  =  if ( ps ,  C ,  B )

Proof of Theorem ifbieq2i
StepHypRef Expression
1 ifbieq2i.1 . . 3  |-  ( ph  <->  ps )
2 ifbi 3546 . . 3  |-  ( (
ph 
<->  ps )  ->  if ( ph ,  C ,  A )  =  if ( ps ,  C ,  A ) )
31, 2ax-mp 5 . 2  |-  if (
ph ,  C ,  A )  =  if ( ps ,  C ,  A )
4 ifbieq2i.2 . . 3  |-  A  =  B
5 ifeq2 3530 . . 3  |-  ( A  =  B  ->  if ( ps ,  C ,  A )  =  if ( ps ,  C ,  B ) )
64, 5ax-mp 5 . 2  |-  if ( ps ,  C ,  A )  =  if ( ps ,  C ,  B )
73, 6eqtri 2191 1  |-  if (
ph ,  C ,  A )  =  if ( ps ,  C ,  B )
Colors of variables: wff set class
Syntax hints:    <-> wb 104    = wceq 1348   ifcif 3526
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-rab 2457  df-v 2732  df-un 3125  df-if 3527
This theorem is referenced by:  ifbieq12i  3551  gcdcom  11928  gcdass  11970  lcmcom  12018  lcmass  12039
  Copyright terms: Public domain W3C validator