ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ifbieq2i Unicode version

Theorem ifbieq2i 3580
Description: Equivalence/equality inference for conditional operators. (Contributed by Paul Chapman, 22-Jun-2011.)
Hypotheses
Ref Expression
ifbieq2i.1  |-  ( ph  <->  ps )
ifbieq2i.2  |-  A  =  B
Assertion
Ref Expression
ifbieq2i  |-  if (
ph ,  C ,  A )  =  if ( ps ,  C ,  B )

Proof of Theorem ifbieq2i
StepHypRef Expression
1 ifbieq2i.1 . . 3  |-  ( ph  <->  ps )
2 ifbi 3577 . . 3  |-  ( (
ph 
<->  ps )  ->  if ( ph ,  C ,  A )  =  if ( ps ,  C ,  A ) )
31, 2ax-mp 5 . 2  |-  if (
ph ,  C ,  A )  =  if ( ps ,  C ,  A )
4 ifbieq2i.2 . . 3  |-  A  =  B
5 ifeq2 3561 . . 3  |-  ( A  =  B  ->  if ( ps ,  C ,  A )  =  if ( ps ,  C ,  B ) )
64, 5ax-mp 5 . 2  |-  if ( ps ,  C ,  A )  =  if ( ps ,  C ,  B )
73, 6eqtri 2214 1  |-  if (
ph ,  C ,  A )  =  if ( ps ,  C ,  B )
Colors of variables: wff set class
Syntax hints:    <-> wb 105    = wceq 1364   ifcif 3557
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-rab 2481  df-v 2762  df-un 3157  df-if 3558
This theorem is referenced by:  ifbieq12i  3582  gcdcom  12110  gcdass  12152  lcmcom  12202  lcmass  12223
  Copyright terms: Public domain W3C validator