ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ifbieq2i Unicode version

Theorem ifbieq2i 3584
Description: Equivalence/equality inference for conditional operators. (Contributed by Paul Chapman, 22-Jun-2011.)
Hypotheses
Ref Expression
ifbieq2i.1  |-  ( ph  <->  ps )
ifbieq2i.2  |-  A  =  B
Assertion
Ref Expression
ifbieq2i  |-  if (
ph ,  C ,  A )  =  if ( ps ,  C ,  B )

Proof of Theorem ifbieq2i
StepHypRef Expression
1 ifbieq2i.1 . . 3  |-  ( ph  <->  ps )
2 ifbi 3581 . . 3  |-  ( (
ph 
<->  ps )  ->  if ( ph ,  C ,  A )  =  if ( ps ,  C ,  A ) )
31, 2ax-mp 5 . 2  |-  if (
ph ,  C ,  A )  =  if ( ps ,  C ,  A )
4 ifbieq2i.2 . . 3  |-  A  =  B
5 ifeq2 3565 . . 3  |-  ( A  =  B  ->  if ( ps ,  C ,  A )  =  if ( ps ,  C ,  B ) )
64, 5ax-mp 5 . 2  |-  if ( ps ,  C ,  A )  =  if ( ps ,  C ,  B )
73, 6eqtri 2217 1  |-  if (
ph ,  C ,  A )  =  if ( ps ,  C ,  B )
Colors of variables: wff set class
Syntax hints:    <-> wb 105    = wceq 1364   ifcif 3561
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-rab 2484  df-v 2765  df-un 3161  df-if 3562
This theorem is referenced by:  ifbieq12i  3586  gcdcom  12140  gcdass  12182  lcmcom  12232  lcmass  12253
  Copyright terms: Public domain W3C validator