ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ifbieq2i Unicode version

Theorem ifbieq2i 3603
Description: Equivalence/equality inference for conditional operators. (Contributed by Paul Chapman, 22-Jun-2011.)
Hypotheses
Ref Expression
ifbieq2i.1  |-  ( ph  <->  ps )
ifbieq2i.2  |-  A  =  B
Assertion
Ref Expression
ifbieq2i  |-  if (
ph ,  C ,  A )  =  if ( ps ,  C ,  B )

Proof of Theorem ifbieq2i
StepHypRef Expression
1 ifbieq2i.1 . . 3  |-  ( ph  <->  ps )
2 ifbi 3600 . . 3  |-  ( (
ph 
<->  ps )  ->  if ( ph ,  C ,  A )  =  if ( ps ,  C ,  A ) )
31, 2ax-mp 5 . 2  |-  if (
ph ,  C ,  A )  =  if ( ps ,  C ,  A )
4 ifbieq2i.2 . . 3  |-  A  =  B
5 ifeq2 3583 . . 3  |-  ( A  =  B  ->  if ( ps ,  C ,  A )  =  if ( ps ,  C ,  B ) )
64, 5ax-mp 5 . 2  |-  if ( ps ,  C ,  A )  =  if ( ps ,  C ,  B )
73, 6eqtri 2228 1  |-  if (
ph ,  C ,  A )  =  if ( ps ,  C ,  B )
Colors of variables: wff set class
Syntax hints:    <-> wb 105    = wceq 1373   ifcif 3579
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-rab 2495  df-v 2778  df-un 3178  df-if 3580
This theorem is referenced by:  ifbieq12i  3605  gcdcom  12409  gcdass  12451  lcmcom  12501  lcmass  12522
  Copyright terms: Public domain W3C validator