| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ifbieq2i | GIF version | ||
| Description: Equivalence/equality inference for conditional operators. (Contributed by Paul Chapman, 22-Jun-2011.) |
| Ref | Expression |
|---|---|
| ifbieq2i.1 | ⊢ (𝜑 ↔ 𝜓) |
| ifbieq2i.2 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| ifbieq2i | ⊢ if(𝜑, 𝐶, 𝐴) = if(𝜓, 𝐶, 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ifbieq2i.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
| 2 | ifbi 3623 | . . 3 ⊢ ((𝜑 ↔ 𝜓) → if(𝜑, 𝐶, 𝐴) = if(𝜓, 𝐶, 𝐴)) | |
| 3 | 1, 2 | ax-mp 5 | . 2 ⊢ if(𝜑, 𝐶, 𝐴) = if(𝜓, 𝐶, 𝐴) |
| 4 | ifbieq2i.2 | . . 3 ⊢ 𝐴 = 𝐵 | |
| 5 | ifeq2 3606 | . . 3 ⊢ (𝐴 = 𝐵 → if(𝜓, 𝐶, 𝐴) = if(𝜓, 𝐶, 𝐵)) | |
| 6 | 4, 5 | ax-mp 5 | . 2 ⊢ if(𝜓, 𝐶, 𝐴) = if(𝜓, 𝐶, 𝐵) |
| 7 | 3, 6 | eqtri 2250 | 1 ⊢ if(𝜑, 𝐶, 𝐴) = if(𝜓, 𝐶, 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 = wceq 1395 ifcif 3602 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-rab 2517 df-v 2801 df-un 3201 df-if 3603 |
| This theorem is referenced by: ifbieq12i 3628 gcdcom 12489 gcdass 12531 lcmcom 12581 lcmass 12602 |
| Copyright terms: Public domain | W3C validator |