Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ifbieq2i | GIF version |
Description: Equivalence/equality inference for conditional operators. (Contributed by Paul Chapman, 22-Jun-2011.) |
Ref | Expression |
---|---|
ifbieq2i.1 | ⊢ (𝜑 ↔ 𝜓) |
ifbieq2i.2 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
ifbieq2i | ⊢ if(𝜑, 𝐶, 𝐴) = if(𝜓, 𝐶, 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ifbieq2i.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
2 | ifbi 3540 | . . 3 ⊢ ((𝜑 ↔ 𝜓) → if(𝜑, 𝐶, 𝐴) = if(𝜓, 𝐶, 𝐴)) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ if(𝜑, 𝐶, 𝐴) = if(𝜓, 𝐶, 𝐴) |
4 | ifbieq2i.2 | . . 3 ⊢ 𝐴 = 𝐵 | |
5 | ifeq2 3524 | . . 3 ⊢ (𝐴 = 𝐵 → if(𝜓, 𝐶, 𝐴) = if(𝜓, 𝐶, 𝐵)) | |
6 | 4, 5 | ax-mp 5 | . 2 ⊢ if(𝜓, 𝐶, 𝐴) = if(𝜓, 𝐶, 𝐵) |
7 | 3, 6 | eqtri 2186 | 1 ⊢ if(𝜑, 𝐶, 𝐴) = if(𝜓, 𝐶, 𝐵) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 104 = wceq 1343 ifcif 3520 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-rab 2453 df-v 2728 df-un 3120 df-if 3521 |
This theorem is referenced by: ifbieq12i 3545 gcdcom 11906 gcdass 11948 lcmcom 11996 lcmass 12017 |
Copyright terms: Public domain | W3C validator |