| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > ifbieq2i | GIF version | ||
| Description: Equivalence/equality inference for conditional operators. (Contributed by Paul Chapman, 22-Jun-2011.) | 
| Ref | Expression | 
|---|---|
| ifbieq2i.1 | ⊢ (𝜑 ↔ 𝜓) | 
| ifbieq2i.2 | ⊢ 𝐴 = 𝐵 | 
| Ref | Expression | 
|---|---|
| ifbieq2i | ⊢ if(𝜑, 𝐶, 𝐴) = if(𝜓, 𝐶, 𝐵) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ifbieq2i.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
| 2 | ifbi 3581 | . . 3 ⊢ ((𝜑 ↔ 𝜓) → if(𝜑, 𝐶, 𝐴) = if(𝜓, 𝐶, 𝐴)) | |
| 3 | 1, 2 | ax-mp 5 | . 2 ⊢ if(𝜑, 𝐶, 𝐴) = if(𝜓, 𝐶, 𝐴) | 
| 4 | ifbieq2i.2 | . . 3 ⊢ 𝐴 = 𝐵 | |
| 5 | ifeq2 3565 | . . 3 ⊢ (𝐴 = 𝐵 → if(𝜓, 𝐶, 𝐴) = if(𝜓, 𝐶, 𝐵)) | |
| 6 | 4, 5 | ax-mp 5 | . 2 ⊢ if(𝜓, 𝐶, 𝐴) = if(𝜓, 𝐶, 𝐵) | 
| 7 | 3, 6 | eqtri 2217 | 1 ⊢ if(𝜑, 𝐶, 𝐴) = if(𝜓, 𝐶, 𝐵) | 
| Colors of variables: wff set class | 
| Syntax hints: ↔ wb 105 = wceq 1364 ifcif 3561 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rab 2484 df-v 2765 df-un 3161 df-if 3562 | 
| This theorem is referenced by: ifbieq12i 3586 gcdcom 12140 gcdass 12182 lcmcom 12232 lcmass 12253 | 
| Copyright terms: Public domain | W3C validator |