![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ifbieq2i | GIF version |
Description: Equivalence/equality inference for conditional operators. (Contributed by Paul Chapman, 22-Jun-2011.) |
Ref | Expression |
---|---|
ifbieq2i.1 | ⊢ (𝜑 ↔ 𝜓) |
ifbieq2i.2 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
ifbieq2i | ⊢ if(𝜑, 𝐶, 𝐴) = if(𝜓, 𝐶, 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ifbieq2i.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
2 | ifbi 3417 | . . 3 ⊢ ((𝜑 ↔ 𝜓) → if(𝜑, 𝐶, 𝐴) = if(𝜓, 𝐶, 𝐴)) | |
3 | 1, 2 | ax-mp 7 | . 2 ⊢ if(𝜑, 𝐶, 𝐴) = if(𝜓, 𝐶, 𝐴) |
4 | ifbieq2i.2 | . . 3 ⊢ 𝐴 = 𝐵 | |
5 | ifeq2 3403 | . . 3 ⊢ (𝐴 = 𝐵 → if(𝜓, 𝐶, 𝐴) = if(𝜓, 𝐶, 𝐵)) | |
6 | 4, 5 | ax-mp 7 | . 2 ⊢ if(𝜓, 𝐶, 𝐴) = if(𝜓, 𝐶, 𝐵) |
7 | 3, 6 | eqtri 2109 | 1 ⊢ if(𝜑, 𝐶, 𝐴) = if(𝜓, 𝐶, 𝐵) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 104 = wceq 1290 ifcif 3399 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 580 ax-in2 581 ax-io 666 ax-5 1382 ax-7 1383 ax-gen 1384 ax-ie1 1428 ax-ie2 1429 ax-8 1441 ax-10 1442 ax-11 1443 ax-i12 1444 ax-bndl 1445 ax-4 1446 ax-17 1465 ax-i9 1469 ax-ial 1473 ax-i5r 1474 ax-ext 2071 |
This theorem depends on definitions: df-bi 116 df-tru 1293 df-nf 1396 df-sb 1694 df-clab 2076 df-cleq 2082 df-clel 2085 df-nfc 2218 df-rab 2369 df-v 2624 df-un 3006 df-if 3400 |
This theorem is referenced by: ifbieq12i 3422 gcdcom 11306 gcdass 11345 lcmcom 11387 lcmass 11408 |
Copyright terms: Public domain | W3C validator |