Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ifbieq2d | Unicode version |
Description: Equivalence/equality deduction for conditional operators. (Contributed by Paul Chapman, 22-Jun-2011.) |
Ref | Expression |
---|---|
ifbieq2d.1 | |
ifbieq2d.2 |
Ref | Expression |
---|---|
ifbieq2d |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ifbieq2d.1 | . . 3 | |
2 | 1 | ifbid 3522 | . 2 |
3 | ifbieq2d.2 | . . 3 | |
4 | 3 | ifeq2d 3519 | . 2 |
5 | 2, 4 | eqtrd 2187 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 wceq 1332 cif 3501 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1424 ax-7 1425 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-8 1481 ax-10 1482 ax-11 1483 ax-i12 1484 ax-bndl 1486 ax-4 1487 ax-17 1503 ax-i9 1507 ax-ial 1511 ax-i5r 1512 ax-ext 2136 |
This theorem depends on definitions: df-bi 116 df-tru 1335 df-nf 1438 df-sb 1740 df-clab 2141 df-cleq 2147 df-clel 2150 df-nfc 2285 df-rab 2441 df-v 2711 df-un 3102 df-if 3502 |
This theorem is referenced by: difinfsnlem 7029 ctmlemr 7038 xnegeq 9709 xaddval 9727 iseqf1olemqval 10364 iseqf1olemqk 10371 seq3f1olemqsum 10377 exp3val 10399 gcdval 11815 gcdass 11870 lcmval 11911 lcmass 11933 ennnfonelemj0 12081 ennnfonelemjn 12082 ennnfonelem0 12085 ennnfonelemp1 12086 ennnfonelemnn0 12102 nnsf 13517 peano4nninf 13518 peano3nninf 13519 exmidsbthr 13535 |
Copyright terms: Public domain | W3C validator |