| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ifbieq2d | Unicode version | ||
| Description: Equivalence/equality deduction for conditional operators. (Contributed by Paul Chapman, 22-Jun-2011.) |
| Ref | Expression |
|---|---|
| ifbieq2d.1 |
|
| ifbieq2d.2 |
|
| Ref | Expression |
|---|---|
| ifbieq2d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ifbieq2d.1 |
. . 3
| |
| 2 | 1 | ifbid 3624 |
. 2
|
| 3 | ifbieq2d.2 |
. . 3
| |
| 4 | 3 | ifeq2d 3621 |
. 2
|
| 5 | 2, 4 | eqtrd 2262 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-rab 2517 df-v 2801 df-un 3201 df-if 3603 |
| This theorem is referenced by: difinfsnlem 7266 ctmlemr 7275 xnegeq 10023 xaddval 10041 iseqf1olemqval 10722 iseqf1olemqk 10729 seq3f1olemqsum 10735 exp3val 10763 gcdval 12480 gcdass 12536 lcmval 12585 lcmass 12607 pcval 12819 ennnfonelemj0 12972 ennnfonelemjn 12973 ennnfonelem0 12976 ennnfonelemp1 12977 ennnfonelemnn0 12993 mulgval 13659 znval 14600 lgsval 15683 lgsfvalg 15684 lgsval2lem 15689 nnsf 16371 peano4nninf 16372 peano3nninf 16373 exmidsbthr 16391 |
| Copyright terms: Public domain | W3C validator |