Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ifbieq2d | Unicode version |
Description: Equivalence/equality deduction for conditional operators. (Contributed by Paul Chapman, 22-Jun-2011.) |
Ref | Expression |
---|---|
ifbieq2d.1 | |
ifbieq2d.2 |
Ref | Expression |
---|---|
ifbieq2d |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ifbieq2d.1 | . . 3 | |
2 | 1 | ifbid 3547 | . 2 |
3 | ifbieq2d.2 | . . 3 | |
4 | 3 | ifeq2d 3544 | . 2 |
5 | 2, 4 | eqtrd 2203 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 wceq 1348 cif 3526 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-rab 2457 df-v 2732 df-un 3125 df-if 3527 |
This theorem is referenced by: difinfsnlem 7076 ctmlemr 7085 xnegeq 9784 xaddval 9802 iseqf1olemqval 10443 iseqf1olemqk 10450 seq3f1olemqsum 10456 exp3val 10478 gcdval 11914 gcdass 11970 lcmval 12017 lcmass 12039 pcval 12250 ennnfonelemj0 12356 ennnfonelemjn 12357 ennnfonelem0 12360 ennnfonelemp1 12361 ennnfonelemnn0 12377 lgsval 13699 lgsfvalg 13700 lgsval2lem 13705 nnsf 14038 peano4nninf 14039 peano3nninf 14040 exmidsbthr 14055 |
Copyright terms: Public domain | W3C validator |