Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ifbieq2d | Unicode version |
Description: Equivalence/equality deduction for conditional operators. (Contributed by Paul Chapman, 22-Jun-2011.) |
Ref | Expression |
---|---|
ifbieq2d.1 | |
ifbieq2d.2 |
Ref | Expression |
---|---|
ifbieq2d |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ifbieq2d.1 | . . 3 | |
2 | 1 | ifbid 3553 | . 2 |
3 | ifbieq2d.2 | . . 3 | |
4 | 3 | ifeq2d 3550 | . 2 |
5 | 2, 4 | eqtrd 2208 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 105 wceq 1353 cif 3532 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-ext 2157 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-rab 2462 df-v 2737 df-un 3131 df-if 3533 |
This theorem is referenced by: difinfsnlem 7088 ctmlemr 7097 xnegeq 9796 xaddval 9814 iseqf1olemqval 10455 iseqf1olemqk 10462 seq3f1olemqsum 10468 exp3val 10490 gcdval 11925 gcdass 11981 lcmval 12028 lcmass 12050 pcval 12261 ennnfonelemj0 12367 ennnfonelemjn 12368 ennnfonelem0 12371 ennnfonelemp1 12372 ennnfonelemnn0 12388 mulgval 12845 lgsval 13974 lgsfvalg 13975 lgsval2lem 13980 nnsf 14313 peano4nninf 14314 peano3nninf 14315 exmidsbthr 14330 |
Copyright terms: Public domain | W3C validator |