| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ifbieq2d | Unicode version | ||
| Description: Equivalence/equality deduction for conditional operators. (Contributed by Paul Chapman, 22-Jun-2011.) |
| Ref | Expression |
|---|---|
| ifbieq2d.1 |
|
| ifbieq2d.2 |
|
| Ref | Expression |
|---|---|
| ifbieq2d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ifbieq2d.1 |
. . 3
| |
| 2 | 1 | ifbid 3592 |
. 2
|
| 3 | ifbieq2d.2 |
. . 3
| |
| 4 | 3 | ifeq2d 3589 |
. 2
|
| 5 | 2, 4 | eqtrd 2238 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-rab 2493 df-v 2774 df-un 3170 df-if 3572 |
| This theorem is referenced by: difinfsnlem 7201 ctmlemr 7210 xnegeq 9949 xaddval 9967 iseqf1olemqval 10645 iseqf1olemqk 10652 seq3f1olemqsum 10658 exp3val 10686 gcdval 12280 gcdass 12336 lcmval 12385 lcmass 12407 pcval 12619 ennnfonelemj0 12772 ennnfonelemjn 12773 ennnfonelem0 12776 ennnfonelemp1 12777 ennnfonelemnn0 12793 mulgval 13458 znval 14398 lgsval 15481 lgsfvalg 15482 lgsval2lem 15487 nnsf 15942 peano4nninf 15943 peano3nninf 15944 exmidsbthr 15962 |
| Copyright terms: Public domain | W3C validator |