| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > ifbieq2d | Unicode version | ||
| Description: Equivalence/equality deduction for conditional operators. (Contributed by Paul Chapman, 22-Jun-2011.) | 
| Ref | Expression | 
|---|---|
| ifbieq2d.1 | 
 | 
| ifbieq2d.2 | 
 | 
| Ref | Expression | 
|---|---|
| ifbieq2d | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ifbieq2d.1 | 
. . 3
 | |
| 2 | 1 | ifbid 3582 | 
. 2
 | 
| 3 | ifbieq2d.2 | 
. . 3
 | |
| 4 | 3 | ifeq2d 3579 | 
. 2
 | 
| 5 | 2, 4 | eqtrd 2229 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rab 2484 df-v 2765 df-un 3161 df-if 3562 | 
| This theorem is referenced by: difinfsnlem 7165 ctmlemr 7174 xnegeq 9902 xaddval 9920 iseqf1olemqval 10592 iseqf1olemqk 10599 seq3f1olemqsum 10605 exp3val 10633 gcdval 12126 gcdass 12182 lcmval 12231 lcmass 12253 pcval 12465 ennnfonelemj0 12618 ennnfonelemjn 12619 ennnfonelem0 12622 ennnfonelemp1 12623 ennnfonelemnn0 12639 mulgval 13252 znval 14192 lgsval 15245 lgsfvalg 15246 lgsval2lem 15251 nnsf 15649 peano4nninf 15650 peano3nninf 15651 exmidsbthr 15667 | 
| Copyright terms: Public domain | W3C validator |