| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ifbieq2d | Unicode version | ||
| Description: Equivalence/equality deduction for conditional operators. (Contributed by Paul Chapman, 22-Jun-2011.) |
| Ref | Expression |
|---|---|
| ifbieq2d.1 |
|
| ifbieq2d.2 |
|
| Ref | Expression |
|---|---|
| ifbieq2d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ifbieq2d.1 |
. . 3
| |
| 2 | 1 | ifbid 3583 |
. 2
|
| 3 | ifbieq2d.2 |
. . 3
| |
| 4 | 3 | ifeq2d 3580 |
. 2
|
| 5 | 2, 4 | eqtrd 2229 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rab 2484 df-v 2765 df-un 3161 df-if 3563 |
| This theorem is referenced by: difinfsnlem 7174 ctmlemr 7183 xnegeq 9919 xaddval 9937 iseqf1olemqval 10609 iseqf1olemqk 10616 seq3f1olemqsum 10622 exp3val 10650 gcdval 12151 gcdass 12207 lcmval 12256 lcmass 12278 pcval 12490 ennnfonelemj0 12643 ennnfonelemjn 12644 ennnfonelem0 12647 ennnfonelemp1 12648 ennnfonelemnn0 12664 mulgval 13328 znval 14268 lgsval 15329 lgsfvalg 15330 lgsval2lem 15335 nnsf 15736 peano4nninf 15737 peano3nninf 15738 exmidsbthr 15754 |
| Copyright terms: Public domain | W3C validator |