![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ifbieq2d | Unicode version |
Description: Equivalence/equality deduction for conditional operators. (Contributed by Paul Chapman, 22-Jun-2011.) |
Ref | Expression |
---|---|
ifbieq2d.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
ifbieq2d.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
ifbieq2d |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ifbieq2d.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | ifbid 3578 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | ifbieq2d.2 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 3 | ifeq2d 3575 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
5 | 2, 4 | eqtrd 2226 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-rab 2481 df-v 2762 df-un 3157 df-if 3558 |
This theorem is referenced by: difinfsnlem 7158 ctmlemr 7167 xnegeq 9893 xaddval 9911 iseqf1olemqval 10571 iseqf1olemqk 10578 seq3f1olemqsum 10584 exp3val 10612 gcdval 12096 gcdass 12152 lcmval 12201 lcmass 12223 pcval 12434 ennnfonelemj0 12558 ennnfonelemjn 12559 ennnfonelem0 12562 ennnfonelemp1 12563 ennnfonelemnn0 12579 mulgval 13192 znval 14124 lgsval 15120 lgsfvalg 15121 lgsval2lem 15126 nnsf 15495 peano4nninf 15496 peano3nninf 15497 exmidsbthr 15513 |
Copyright terms: Public domain | W3C validator |