ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ifbieq2d Unicode version

Theorem ifbieq2d 3573
Description: Equivalence/equality deduction for conditional operators. (Contributed by Paul Chapman, 22-Jun-2011.)
Hypotheses
Ref Expression
ifbieq2d.1  |-  ( ph  ->  ( ps  <->  ch )
)
ifbieq2d.2  |-  ( ph  ->  A  =  B )
Assertion
Ref Expression
ifbieq2d  |-  ( ph  ->  if ( ps ,  C ,  A )  =  if ( ch ,  C ,  B )
)

Proof of Theorem ifbieq2d
StepHypRef Expression
1 ifbieq2d.1 . . 3  |-  ( ph  ->  ( ps  <->  ch )
)
21ifbid 3570 . 2  |-  ( ph  ->  if ( ps ,  C ,  A )  =  if ( ch ,  C ,  A )
)
3 ifbieq2d.2 . . 3  |-  ( ph  ->  A  =  B )
43ifeq2d 3567 . 2  |-  ( ph  ->  if ( ch ,  C ,  A )  =  if ( ch ,  C ,  B )
)
52, 4eqtrd 2222 1  |-  ( ph  ->  if ( ps ,  C ,  A )  =  if ( ch ,  C ,  B )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1364   ifcif 3549
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2171
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-rab 2477  df-v 2754  df-un 3148  df-if 3550
This theorem is referenced by:  difinfsnlem  7129  ctmlemr  7138  xnegeq  9859  xaddval  9877  iseqf1olemqval  10520  iseqf1olemqk  10527  seq3f1olemqsum  10533  exp3val  10556  gcdval  11995  gcdass  12051  lcmval  12098  lcmass  12120  pcval  12331  ennnfonelemj0  12455  ennnfonelemjn  12456  ennnfonelem0  12459  ennnfonelemp1  12460  ennnfonelemnn0  12476  mulgval  13079  znval  13949  lgsval  14883  lgsfvalg  14884  lgsval2lem  14889  nnsf  15233  peano4nninf  15234  peano3nninf  15235  exmidsbthr  15250
  Copyright terms: Public domain W3C validator