ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ifbieq2d Unicode version

Theorem ifbieq2d 3604
Description: Equivalence/equality deduction for conditional operators. (Contributed by Paul Chapman, 22-Jun-2011.)
Hypotheses
Ref Expression
ifbieq2d.1  |-  ( ph  ->  ( ps  <->  ch )
)
ifbieq2d.2  |-  ( ph  ->  A  =  B )
Assertion
Ref Expression
ifbieq2d  |-  ( ph  ->  if ( ps ,  C ,  A )  =  if ( ch ,  C ,  B )
)

Proof of Theorem ifbieq2d
StepHypRef Expression
1 ifbieq2d.1 . . 3  |-  ( ph  ->  ( ps  <->  ch )
)
21ifbid 3601 . 2  |-  ( ph  ->  if ( ps ,  C ,  A )  =  if ( ch ,  C ,  A )
)
3 ifbieq2d.2 . . 3  |-  ( ph  ->  A  =  B )
43ifeq2d 3598 . 2  |-  ( ph  ->  if ( ch ,  C ,  A )  =  if ( ch ,  C ,  B )
)
52, 4eqtrd 2240 1  |-  ( ph  ->  if ( ps ,  C ,  A )  =  if ( ch ,  C ,  B )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1373   ifcif 3579
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-rab 2495  df-v 2778  df-un 3178  df-if 3580
This theorem is referenced by:  difinfsnlem  7227  ctmlemr  7236  xnegeq  9984  xaddval  10002  iseqf1olemqval  10682  iseqf1olemqk  10689  seq3f1olemqsum  10695  exp3val  10723  gcdval  12395  gcdass  12451  lcmval  12500  lcmass  12522  pcval  12734  ennnfonelemj0  12887  ennnfonelemjn  12888  ennnfonelem0  12891  ennnfonelemp1  12892  ennnfonelemnn0  12908  mulgval  13573  znval  14513  lgsval  15596  lgsfvalg  15597  lgsval2lem  15602  nnsf  16144  peano4nninf  16145  peano3nninf  16146  exmidsbthr  16164
  Copyright terms: Public domain W3C validator