| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ifbieq2d | Unicode version | ||
| Description: Equivalence/equality deduction for conditional operators. (Contributed by Paul Chapman, 22-Jun-2011.) |
| Ref | Expression |
|---|---|
| ifbieq2d.1 |
|
| ifbieq2d.2 |
|
| Ref | Expression |
|---|---|
| ifbieq2d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ifbieq2d.1 |
. . 3
| |
| 2 | 1 | ifbid 3601 |
. 2
|
| 3 | ifbieq2d.2 |
. . 3
| |
| 4 | 3 | ifeq2d 3598 |
. 2
|
| 5 | 2, 4 | eqtrd 2240 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-rab 2495 df-v 2778 df-un 3178 df-if 3580 |
| This theorem is referenced by: difinfsnlem 7227 ctmlemr 7236 xnegeq 9984 xaddval 10002 iseqf1olemqval 10682 iseqf1olemqk 10689 seq3f1olemqsum 10695 exp3val 10723 gcdval 12395 gcdass 12451 lcmval 12500 lcmass 12522 pcval 12734 ennnfonelemj0 12887 ennnfonelemjn 12888 ennnfonelem0 12891 ennnfonelemp1 12892 ennnfonelemnn0 12908 mulgval 13573 znval 14513 lgsval 15596 lgsfvalg 15597 lgsval2lem 15602 nnsf 16144 peano4nninf 16145 peano3nninf 16146 exmidsbthr 16164 |
| Copyright terms: Public domain | W3C validator |