ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ifbieq1d Unicode version

Theorem ifbieq1d 3602
Description: Equivalence/equality deduction for conditional operators. (Contributed by JJ, 25-Sep-2018.)
Hypotheses
Ref Expression
ifbieq1d.1  |-  ( ph  ->  ( ps  <->  ch )
)
ifbieq1d.2  |-  ( ph  ->  A  =  B )
Assertion
Ref Expression
ifbieq1d  |-  ( ph  ->  if ( ps ,  A ,  C )  =  if ( ch ,  B ,  C )
)

Proof of Theorem ifbieq1d
StepHypRef Expression
1 ifbieq1d.1 . . 3  |-  ( ph  ->  ( ps  <->  ch )
)
21ifbid 3601 . 2  |-  ( ph  ->  if ( ps ,  A ,  C )  =  if ( ch ,  A ,  C )
)
3 ifbieq1d.2 . . 3  |-  ( ph  ->  A  =  B )
43ifeq1d 3597 . 2  |-  ( ph  ->  if ( ch ,  A ,  C )  =  if ( ch ,  B ,  C )
)
52, 4eqtrd 2240 1  |-  ( ph  ->  if ( ps ,  A ,  C )  =  if ( ch ,  B ,  C )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1373   ifcif 3579
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-rab 2495  df-v 2778  df-un 3178  df-if 3580
This theorem is referenced by:  ctssdclemn0  7238  ctssdc  7241  enumctlemm  7242  iseqf1olemfvp  10692  seq3f1olemqsum  10695  seq3f1oleml  10698  seq3f1o  10699  bcval  10931  swrdval  11139  sumrbdclem  11803  summodclem3  11806  summodclem2a  11807  summodc  11809  zsumdc  11810  fsum3  11813  isumss  11817  isumss2  11819  fsum3cvg2  11820  fsum3ser  11823  fsumcl2lem  11824  fsumadd  11832  sumsnf  11835  fsummulc2  11874  isumlessdc  11922  cbvprod  11984  prodrbdclem  11997  prodmodclem3  12001  prodmodclem2a  12002  prodmodc  12004  zproddc  12005  fprodseq  12009  fprodntrivap  12010  prodssdc  12015  fprodmul  12017  prodsnf  12018  pcmpt  12781  pcmptdvds  12783  elply2  15322  lgsval  15596  lgsfvalg  15597  lgsdir  15627  lgsdilem2  15628  lgsdi  15629  lgsne0  15630
  Copyright terms: Public domain W3C validator