| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ifbieq1d | Unicode version | ||
| Description: Equivalence/equality deduction for conditional operators. (Contributed by JJ, 25-Sep-2018.) |
| Ref | Expression |
|---|---|
| ifbieq1d.1 |
|
| ifbieq1d.2 |
|
| Ref | Expression |
|---|---|
| ifbieq1d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ifbieq1d.1 |
. . 3
| |
| 2 | 1 | ifbid 3583 |
. 2
|
| 3 | ifbieq1d.2 |
. . 3
| |
| 4 | 3 | ifeq1d 3579 |
. 2
|
| 5 | 2, 4 | eqtrd 2229 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rab 2484 df-v 2765 df-un 3161 df-if 3563 |
| This theorem is referenced by: ctssdclemn0 7177 ctssdc 7180 enumctlemm 7181 iseqf1olemfvp 10604 seq3f1olemqsum 10607 seq3f1oleml 10610 seq3f1o 10611 bcval 10843 sumrbdclem 11544 summodclem3 11547 summodclem2a 11548 summodc 11550 zsumdc 11551 fsum3 11554 isumss 11558 isumss2 11560 fsum3cvg2 11561 fsum3ser 11564 fsumcl2lem 11565 fsumadd 11573 sumsnf 11576 fsummulc2 11615 isumlessdc 11663 cbvprod 11725 prodrbdclem 11738 prodmodclem3 11742 prodmodclem2a 11743 prodmodc 11745 zproddc 11746 fprodseq 11750 fprodntrivap 11751 prodssdc 11756 fprodmul 11758 prodsnf 11759 pcmpt 12522 pcmptdvds 12524 elply2 14981 lgsval 15255 lgsfvalg 15256 lgsdir 15286 lgsdilem2 15287 lgsdi 15288 lgsne0 15289 |
| Copyright terms: Public domain | W3C validator |