ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ifbieq1d Unicode version

Theorem ifbieq1d 3527
Description: Equivalence/equality deduction for conditional operators. (Contributed by JJ, 25-Sep-2018.)
Hypotheses
Ref Expression
ifbieq1d.1  |-  ( ph  ->  ( ps  <->  ch )
)
ifbieq1d.2  |-  ( ph  ->  A  =  B )
Assertion
Ref Expression
ifbieq1d  |-  ( ph  ->  if ( ps ,  A ,  C )  =  if ( ch ,  B ,  C )
)

Proof of Theorem ifbieq1d
StepHypRef Expression
1 ifbieq1d.1 . . 3  |-  ( ph  ->  ( ps  <->  ch )
)
21ifbid 3526 . 2  |-  ( ph  ->  if ( ps ,  A ,  C )  =  if ( ch ,  A ,  C )
)
3 ifbieq1d.2 . . 3  |-  ( ph  ->  A  =  B )
43ifeq1d 3522 . 2  |-  ( ph  ->  if ( ch ,  A ,  C )  =  if ( ch ,  B ,  C )
)
52, 4eqtrd 2190 1  |-  ( ph  ->  if ( ps ,  A ,  C )  =  if ( ch ,  B ,  C )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104    = wceq 1335   ifcif 3505
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2139
This theorem depends on definitions:  df-bi 116  df-tru 1338  df-nf 1441  df-sb 1743  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-rab 2444  df-v 2714  df-un 3106  df-if 3506
This theorem is referenced by:  ctssdclemn0  7044  ctssdc  7047  enumctlemm  7048  iseqf1olemfvp  10378  seq3f1olemqsum  10381  seq3f1oleml  10384  seq3f1o  10385  bcval  10605  sumrbdclem  11256  summodclem3  11259  summodclem2a  11260  summodc  11262  zsumdc  11263  fsum3  11266  isumss  11270  isumss2  11272  fsum3cvg2  11273  fsum3ser  11276  fsumcl2lem  11277  fsumadd  11285  sumsnf  11288  fsummulc2  11327  isumlessdc  11375  cbvprod  11437  prodrbdclem  11450  prodmodclem3  11454  prodmodclem2a  11455  prodmodc  11457  zproddc  11458  fprodseq  11462  fprodntrivap  11463  prodssdc  11468  fprodmul  11470  prodsnf  11471
  Copyright terms: Public domain W3C validator