![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ifbieq1d | Unicode version |
Description: Equivalence/equality deduction for conditional operators. (Contributed by JJ, 25-Sep-2018.) |
Ref | Expression |
---|---|
ifbieq1d.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
ifbieq1d.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
ifbieq1d |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ifbieq1d.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | ifbid 3569 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | ifbieq1d.2 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 3 | ifeq1d 3565 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
5 | 2, 4 | eqtrd 2221 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-ext 2170 |
This theorem depends on definitions: df-bi 117 df-tru 1366 df-nf 1471 df-sb 1773 df-clab 2175 df-cleq 2181 df-clel 2184 df-nfc 2320 df-rab 2476 df-v 2753 df-un 3147 df-if 3549 |
This theorem is referenced by: ctssdclemn0 7126 ctssdc 7129 enumctlemm 7130 iseqf1olemfvp 10514 seq3f1olemqsum 10517 seq3f1oleml 10520 seq3f1o 10521 bcval 10746 sumrbdclem 11402 summodclem3 11405 summodclem2a 11406 summodc 11408 zsumdc 11409 fsum3 11412 isumss 11416 isumss2 11418 fsum3cvg2 11419 fsum3ser 11422 fsumcl2lem 11423 fsumadd 11431 sumsnf 11434 fsummulc2 11473 isumlessdc 11521 cbvprod 11583 prodrbdclem 11596 prodmodclem3 11600 prodmodclem2a 11601 prodmodc 11603 zproddc 11604 fprodseq 11608 fprodntrivap 11609 prodssdc 11614 fprodmul 11616 prodsnf 11617 pcmpt 12358 pcmptdvds 12360 lgsval 14788 lgsfvalg 14789 lgsdir 14819 lgsdilem2 14820 lgsdi 14821 lgsne0 14822 |
Copyright terms: Public domain | W3C validator |