| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ifbieq1d | Unicode version | ||
| Description: Equivalence/equality deduction for conditional operators. (Contributed by JJ, 25-Sep-2018.) |
| Ref | Expression |
|---|---|
| ifbieq1d.1 |
|
| ifbieq1d.2 |
|
| Ref | Expression |
|---|---|
| ifbieq1d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ifbieq1d.1 |
. . 3
| |
| 2 | 1 | ifbid 3624 |
. 2
|
| 3 | ifbieq1d.2 |
. . 3
| |
| 4 | 3 | ifeq1d 3620 |
. 2
|
| 5 | 2, 4 | eqtrd 2262 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-rab 2517 df-v 2801 df-un 3201 df-if 3603 |
| This theorem is referenced by: ctssdclemn0 7273 ctssdc 7276 enumctlemm 7277 iseqf1olemfvp 10727 seq3f1olemqsum 10730 seq3f1oleml 10733 seq3f1o 10734 bcval 10966 swrdval 11175 sumrbdclem 11883 summodclem3 11886 summodclem2a 11887 summodc 11889 zsumdc 11890 fsum3 11893 isumss 11897 isumss2 11899 fsum3cvg2 11900 fsum3ser 11903 fsumcl2lem 11904 fsumadd 11912 sumsnf 11915 fsummulc2 11954 isumlessdc 12002 cbvprod 12064 prodrbdclem 12077 prodmodclem3 12081 prodmodclem2a 12082 prodmodc 12084 zproddc 12085 fprodseq 12089 fprodntrivap 12090 prodssdc 12095 fprodmul 12097 prodsnf 12098 pcmpt 12861 pcmptdvds 12863 elply2 15403 lgsval 15677 lgsfvalg 15678 lgsdir 15708 lgsdilem2 15709 lgsdi 15710 lgsne0 15711 |
| Copyright terms: Public domain | W3C validator |