| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ifbieq1d | Unicode version | ||
| Description: Equivalence/equality deduction for conditional operators. (Contributed by JJ, 25-Sep-2018.) |
| Ref | Expression |
|---|---|
| ifbieq1d.1 |
|
| ifbieq1d.2 |
|
| Ref | Expression |
|---|---|
| ifbieq1d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ifbieq1d.1 |
. . 3
| |
| 2 | 1 | ifbid 3601 |
. 2
|
| 3 | ifbieq1d.2 |
. . 3
| |
| 4 | 3 | ifeq1d 3597 |
. 2
|
| 5 | 2, 4 | eqtrd 2240 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-rab 2495 df-v 2778 df-un 3178 df-if 3580 |
| This theorem is referenced by: ctssdclemn0 7238 ctssdc 7241 enumctlemm 7242 iseqf1olemfvp 10692 seq3f1olemqsum 10695 seq3f1oleml 10698 seq3f1o 10699 bcval 10931 swrdval 11139 sumrbdclem 11803 summodclem3 11806 summodclem2a 11807 summodc 11809 zsumdc 11810 fsum3 11813 isumss 11817 isumss2 11819 fsum3cvg2 11820 fsum3ser 11823 fsumcl2lem 11824 fsumadd 11832 sumsnf 11835 fsummulc2 11874 isumlessdc 11922 cbvprod 11984 prodrbdclem 11997 prodmodclem3 12001 prodmodclem2a 12002 prodmodc 12004 zproddc 12005 fprodseq 12009 fprodntrivap 12010 prodssdc 12015 fprodmul 12017 prodsnf 12018 pcmpt 12781 pcmptdvds 12783 elply2 15322 lgsval 15596 lgsfvalg 15597 lgsdir 15627 lgsdilem2 15628 lgsdi 15629 lgsne0 15630 |
| Copyright terms: Public domain | W3C validator |