| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ifbieq1d | Unicode version | ||
| Description: Equivalence/equality deduction for conditional operators. (Contributed by JJ, 25-Sep-2018.) |
| Ref | Expression |
|---|---|
| ifbieq1d.1 |
|
| ifbieq1d.2 |
|
| Ref | Expression |
|---|---|
| ifbieq1d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ifbieq1d.1 |
. . 3
| |
| 2 | 1 | ifbid 3583 |
. 2
|
| 3 | ifbieq1d.2 |
. . 3
| |
| 4 | 3 | ifeq1d 3579 |
. 2
|
| 5 | 2, 4 | eqtrd 2229 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rab 2484 df-v 2765 df-un 3161 df-if 3563 |
| This theorem is referenced by: ctssdclemn0 7185 ctssdc 7188 enumctlemm 7189 iseqf1olemfvp 10621 seq3f1olemqsum 10624 seq3f1oleml 10627 seq3f1o 10628 bcval 10860 sumrbdclem 11561 summodclem3 11564 summodclem2a 11565 summodc 11567 zsumdc 11568 fsum3 11571 isumss 11575 isumss2 11577 fsum3cvg2 11578 fsum3ser 11581 fsumcl2lem 11582 fsumadd 11590 sumsnf 11593 fsummulc2 11632 isumlessdc 11680 cbvprod 11742 prodrbdclem 11755 prodmodclem3 11759 prodmodclem2a 11760 prodmodc 11762 zproddc 11763 fprodseq 11767 fprodntrivap 11768 prodssdc 11773 fprodmul 11775 prodsnf 11776 pcmpt 12539 pcmptdvds 12541 elply2 15079 lgsval 15353 lgsfvalg 15354 lgsdir 15384 lgsdilem2 15385 lgsdi 15386 lgsne0 15387 |
| Copyright terms: Public domain | W3C validator |