| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ifbieq1d | Unicode version | ||
| Description: Equivalence/equality deduction for conditional operators. (Contributed by JJ, 25-Sep-2018.) |
| Ref | Expression |
|---|---|
| ifbieq1d.1 |
|
| ifbieq1d.2 |
|
| Ref | Expression |
|---|---|
| ifbieq1d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ifbieq1d.1 |
. . 3
| |
| 2 | 1 | ifbid 3592 |
. 2
|
| 3 | ifbieq1d.2 |
. . 3
| |
| 4 | 3 | ifeq1d 3588 |
. 2
|
| 5 | 2, 4 | eqtrd 2238 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-rab 2493 df-v 2774 df-un 3170 df-if 3572 |
| This theorem is referenced by: ctssdclemn0 7212 ctssdc 7215 enumctlemm 7216 iseqf1olemfvp 10655 seq3f1olemqsum 10658 seq3f1oleml 10661 seq3f1o 10662 bcval 10894 swrdval 11101 sumrbdclem 11688 summodclem3 11691 summodclem2a 11692 summodc 11694 zsumdc 11695 fsum3 11698 isumss 11702 isumss2 11704 fsum3cvg2 11705 fsum3ser 11708 fsumcl2lem 11709 fsumadd 11717 sumsnf 11720 fsummulc2 11759 isumlessdc 11807 cbvprod 11869 prodrbdclem 11882 prodmodclem3 11886 prodmodclem2a 11887 prodmodc 11889 zproddc 11890 fprodseq 11894 fprodntrivap 11895 prodssdc 11900 fprodmul 11902 prodsnf 11903 pcmpt 12666 pcmptdvds 12668 elply2 15207 lgsval 15481 lgsfvalg 15482 lgsdir 15512 lgsdilem2 15513 lgsdi 15514 lgsne0 15515 |
| Copyright terms: Public domain | W3C validator |