ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ifbieq1d Unicode version

Theorem ifbieq1d 3625
Description: Equivalence/equality deduction for conditional operators. (Contributed by JJ, 25-Sep-2018.)
Hypotheses
Ref Expression
ifbieq1d.1  |-  ( ph  ->  ( ps  <->  ch )
)
ifbieq1d.2  |-  ( ph  ->  A  =  B )
Assertion
Ref Expression
ifbieq1d  |-  ( ph  ->  if ( ps ,  A ,  C )  =  if ( ch ,  B ,  C )
)

Proof of Theorem ifbieq1d
StepHypRef Expression
1 ifbieq1d.1 . . 3  |-  ( ph  ->  ( ps  <->  ch )
)
21ifbid 3624 . 2  |-  ( ph  ->  if ( ps ,  A ,  C )  =  if ( ch ,  A ,  C )
)
3 ifbieq1d.2 . . 3  |-  ( ph  ->  A  =  B )
43ifeq1d 3620 . 2  |-  ( ph  ->  if ( ch ,  A ,  C )  =  if ( ch ,  B ,  C )
)
52, 4eqtrd 2262 1  |-  ( ph  ->  if ( ps ,  A ,  C )  =  if ( ch ,  B ,  C )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1395   ifcif 3602
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-rab 2517  df-v 2801  df-un 3201  df-if 3603
This theorem is referenced by:  ctssdclemn0  7273  ctssdc  7276  enumctlemm  7277  iseqf1olemfvp  10727  seq3f1olemqsum  10730  seq3f1oleml  10733  seq3f1o  10734  bcval  10966  swrdval  11175  sumrbdclem  11883  summodclem3  11886  summodclem2a  11887  summodc  11889  zsumdc  11890  fsum3  11893  isumss  11897  isumss2  11899  fsum3cvg2  11900  fsum3ser  11903  fsumcl2lem  11904  fsumadd  11912  sumsnf  11915  fsummulc2  11954  isumlessdc  12002  cbvprod  12064  prodrbdclem  12077  prodmodclem3  12081  prodmodclem2a  12082  prodmodc  12084  zproddc  12085  fprodseq  12089  fprodntrivap  12090  prodssdc  12095  fprodmul  12097  prodsnf  12098  pcmpt  12861  pcmptdvds  12863  elply2  15403  lgsval  15677  lgsfvalg  15678  lgsdir  15708  lgsdilem2  15709  lgsdi  15710  lgsne0  15711
  Copyright terms: Public domain W3C validator