| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ifbieq1d | Unicode version | ||
| Description: Equivalence/equality deduction for conditional operators. (Contributed by JJ, 25-Sep-2018.) |
| Ref | Expression |
|---|---|
| ifbieq1d.1 |
|
| ifbieq1d.2 |
|
| Ref | Expression |
|---|---|
| ifbieq1d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ifbieq1d.1 |
. . 3
| |
| 2 | 1 | ifbid 3583 |
. 2
|
| 3 | ifbieq1d.2 |
. . 3
| |
| 4 | 3 | ifeq1d 3579 |
. 2
|
| 5 | 2, 4 | eqtrd 2229 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-rab 2484 df-v 2765 df-un 3161 df-if 3563 |
| This theorem is referenced by: ctssdclemn0 7185 ctssdc 7188 enumctlemm 7189 iseqf1olemfvp 10619 seq3f1olemqsum 10622 seq3f1oleml 10625 seq3f1o 10626 bcval 10858 sumrbdclem 11559 summodclem3 11562 summodclem2a 11563 summodc 11565 zsumdc 11566 fsum3 11569 isumss 11573 isumss2 11575 fsum3cvg2 11576 fsum3ser 11579 fsumcl2lem 11580 fsumadd 11588 sumsnf 11591 fsummulc2 11630 isumlessdc 11678 cbvprod 11740 prodrbdclem 11753 prodmodclem3 11757 prodmodclem2a 11758 prodmodc 11760 zproddc 11761 fprodseq 11765 fprodntrivap 11766 prodssdc 11771 fprodmul 11773 prodsnf 11774 pcmpt 12537 pcmptdvds 12539 elply2 15055 lgsval 15329 lgsfvalg 15330 lgsdir 15360 lgsdilem2 15361 lgsdi 15362 lgsne0 15363 |
| Copyright terms: Public domain | W3C validator |