Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ifbieq1d | Unicode version |
Description: Equivalence/equality deduction for conditional operators. (Contributed by JJ, 25-Sep-2018.) |
Ref | Expression |
---|---|
ifbieq1d.1 | |
ifbieq1d.2 |
Ref | Expression |
---|---|
ifbieq1d |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ifbieq1d.1 | . . 3 | |
2 | 1 | ifbid 3526 | . 2 |
3 | ifbieq1d.2 | . . 3 | |
4 | 3 | ifeq1d 3522 | . 2 |
5 | 2, 4 | eqtrd 2190 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 wceq 1335 cif 3505 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-ext 2139 |
This theorem depends on definitions: df-bi 116 df-tru 1338 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-rab 2444 df-v 2714 df-un 3106 df-if 3506 |
This theorem is referenced by: ctssdclemn0 7044 ctssdc 7047 enumctlemm 7048 iseqf1olemfvp 10378 seq3f1olemqsum 10381 seq3f1oleml 10384 seq3f1o 10385 bcval 10605 sumrbdclem 11256 summodclem3 11259 summodclem2a 11260 summodc 11262 zsumdc 11263 fsum3 11266 isumss 11270 isumss2 11272 fsum3cvg2 11273 fsum3ser 11276 fsumcl2lem 11277 fsumadd 11285 sumsnf 11288 fsummulc2 11327 isumlessdc 11375 cbvprod 11437 prodrbdclem 11450 prodmodclem3 11454 prodmodclem2a 11455 prodmodc 11457 zproddc 11458 fprodseq 11462 fprodntrivap 11463 prodssdc 11468 fprodmul 11470 prodsnf 11471 |
Copyright terms: Public domain | W3C validator |