ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  gcdass Unicode version

Theorem gcdass 12536
Description: Associative law for  gcd operator. Theorem 1.4(b) in [ApostolNT] p. 16. (Contributed by Scott Fenton, 2-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
gcdass  |-  ( ( N  e.  ZZ  /\  M  e.  ZZ  /\  P  e.  ZZ )  ->  (
( N  gcd  M
)  gcd  P )  =  ( N  gcd  ( M  gcd  P ) ) )

Proof of Theorem gcdass
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 anass 401 . . 3  |-  ( ( ( N  =  0  /\  M  =  0 )  /\  P  =  0 )  <->  ( N  =  0  /\  ( M  =  0  /\  P  =  0 ) ) )
2 anass 401 . . . . . 6  |-  ( ( ( x  ||  N  /\  x  ||  M )  /\  x  ||  P
)  <->  ( x  ||  N  /\  ( x  ||  M  /\  x  ||  P
) ) )
32a1i 9 . . . . 5  |-  ( x  e.  ZZ  ->  (
( ( x  ||  N  /\  x  ||  M
)  /\  x  ||  P
)  <->  ( x  ||  N  /\  ( x  ||  M  /\  x  ||  P
) ) ) )
43rabbiia 2784 . . . 4  |-  { x  e.  ZZ  |  ( ( x  ||  N  /\  x  ||  M )  /\  x  ||  P ) }  =  { x  e.  ZZ  |  ( x 
||  N  /\  (
x  ||  M  /\  x  ||  P ) ) }
54supeq1i 7155 . . 3  |-  sup ( { x  e.  ZZ  |  ( ( x 
||  N  /\  x  ||  M )  /\  x  ||  P ) } ,  RR ,  <  )  =  sup ( { x  e.  ZZ  |  ( x 
||  N  /\  (
x  ||  M  /\  x  ||  P ) ) } ,  RR ,  <  )
61, 5ifbieq2i 3626 . 2  |-  if ( ( ( N  =  0  /\  M  =  0 )  /\  P  =  0 ) ,  0 ,  sup ( { x  e.  ZZ  |  ( ( x 
||  N  /\  x  ||  M )  /\  x  ||  P ) } ,  RR ,  <  ) )  =  if ( ( N  =  0  /\  ( M  =  0  /\  P  =  0 ) ) ,  0 ,  sup ( { x  e.  ZZ  | 
( x  ||  N  /\  ( x  ||  M  /\  x  ||  P ) ) } ,  RR ,  <  ) )
7 gcdcl 12487 . . . . . 6  |-  ( ( N  e.  ZZ  /\  M  e.  ZZ )  ->  ( N  gcd  M
)  e.  NN0 )
873adant3 1041 . . . . 5  |-  ( ( N  e.  ZZ  /\  M  e.  ZZ  /\  P  e.  ZZ )  ->  ( N  gcd  M )  e. 
NN0 )
98nn0zd 9567 . . . 4  |-  ( ( N  e.  ZZ  /\  M  e.  ZZ  /\  P  e.  ZZ )  ->  ( N  gcd  M )  e.  ZZ )
10 simp3 1023 . . . 4  |-  ( ( N  e.  ZZ  /\  M  e.  ZZ  /\  P  e.  ZZ )  ->  P  e.  ZZ )
11 gcdval 12480 . . . 4  |-  ( ( ( N  gcd  M
)  e.  ZZ  /\  P  e.  ZZ )  ->  ( ( N  gcd  M )  gcd  P )  =  if ( ( ( N  gcd  M
)  =  0  /\  P  =  0 ) ,  0 ,  sup ( { x  e.  ZZ  |  ( x  ||  ( N  gcd  M )  /\  x  ||  P
) } ,  RR ,  <  ) ) )
129, 10, 11syl2anc 411 . . 3  |-  ( ( N  e.  ZZ  /\  M  e.  ZZ  /\  P  e.  ZZ )  ->  (
( N  gcd  M
)  gcd  P )  =  if ( ( ( N  gcd  M )  =  0  /\  P  =  0 ) ,  0 ,  sup ( { x  e.  ZZ  |  ( x  ||  ( N  gcd  M )  /\  x  ||  P
) } ,  RR ,  <  ) ) )
13 gcdeq0 12498 . . . . . . 7  |-  ( ( N  e.  ZZ  /\  M  e.  ZZ )  ->  ( ( N  gcd  M )  =  0  <->  ( N  =  0  /\  M  =  0 ) ) )
14133adant3 1041 . . . . . 6  |-  ( ( N  e.  ZZ  /\  M  e.  ZZ  /\  P  e.  ZZ )  ->  (
( N  gcd  M
)  =  0  <->  ( N  =  0  /\  M  =  0 ) ) )
1514anbi1d 465 . . . . 5  |-  ( ( N  e.  ZZ  /\  M  e.  ZZ  /\  P  e.  ZZ )  ->  (
( ( N  gcd  M )  =  0  /\  P  =  0 )  <-> 
( ( N  =  0  /\  M  =  0 )  /\  P  =  0 ) ) )
1615bicomd 141 . . . 4  |-  ( ( N  e.  ZZ  /\  M  e.  ZZ  /\  P  e.  ZZ )  ->  (
( ( N  =  0  /\  M  =  0 )  /\  P  =  0 )  <->  ( ( N  gcd  M )  =  0  /\  P  =  0 ) ) )
17 simpr 110 . . . . . . . 8  |-  ( ( ( N  e.  ZZ  /\  M  e.  ZZ  /\  P  e.  ZZ )  /\  x  e.  ZZ )  ->  x  e.  ZZ )
18 simpl1 1024 . . . . . . . 8  |-  ( ( ( N  e.  ZZ  /\  M  e.  ZZ  /\  P  e.  ZZ )  /\  x  e.  ZZ )  ->  N  e.  ZZ )
19 simpl2 1025 . . . . . . . 8  |-  ( ( ( N  e.  ZZ  /\  M  e.  ZZ  /\  P  e.  ZZ )  /\  x  e.  ZZ )  ->  M  e.  ZZ )
20 dvdsgcdb 12534 . . . . . . . 8  |-  ( ( x  e.  ZZ  /\  N  e.  ZZ  /\  M  e.  ZZ )  ->  (
( x  ||  N  /\  x  ||  M )  <-> 
x  ||  ( N  gcd  M ) ) )
2117, 18, 19, 20syl3anc 1271 . . . . . . 7  |-  ( ( ( N  e.  ZZ  /\  M  e.  ZZ  /\  P  e.  ZZ )  /\  x  e.  ZZ )  ->  ( ( x 
||  N  /\  x  ||  M )  <->  x  ||  ( N  gcd  M ) ) )
2221anbi1d 465 . . . . . 6  |-  ( ( ( N  e.  ZZ  /\  M  e.  ZZ  /\  P  e.  ZZ )  /\  x  e.  ZZ )  ->  ( ( ( x  ||  N  /\  x  ||  M )  /\  x  ||  P )  <->  ( x  ||  ( N  gcd  M
)  /\  x  ||  P
) ) )
2322rabbidva 2787 . . . . 5  |-  ( ( N  e.  ZZ  /\  M  e.  ZZ  /\  P  e.  ZZ )  ->  { x  e.  ZZ  |  ( ( x  ||  N  /\  x  ||  M )  /\  x  ||  P ) }  =  { x  e.  ZZ  |  ( x 
||  ( N  gcd  M )  /\  x  ||  P ) } )
2423supeq1d 7154 . . . 4  |-  ( ( N  e.  ZZ  /\  M  e.  ZZ  /\  P  e.  ZZ )  ->  sup ( { x  e.  ZZ  |  ( ( x 
||  N  /\  x  ||  M )  /\  x  ||  P ) } ,  RR ,  <  )  =  sup ( { x  e.  ZZ  |  ( x 
||  ( N  gcd  M )  /\  x  ||  P ) } ,  RR ,  <  ) )
2516, 24ifbieq2d 3627 . . 3  |-  ( ( N  e.  ZZ  /\  M  e.  ZZ  /\  P  e.  ZZ )  ->  if ( ( ( N  =  0  /\  M  =  0 )  /\  P  =  0 ) ,  0 ,  sup ( { x  e.  ZZ  |  ( ( x 
||  N  /\  x  ||  M )  /\  x  ||  P ) } ,  RR ,  <  ) )  =  if ( ( ( N  gcd  M
)  =  0  /\  P  =  0 ) ,  0 ,  sup ( { x  e.  ZZ  |  ( x  ||  ( N  gcd  M )  /\  x  ||  P
) } ,  RR ,  <  ) ) )
2612, 25eqtr4d 2265 . 2  |-  ( ( N  e.  ZZ  /\  M  e.  ZZ  /\  P  e.  ZZ )  ->  (
( N  gcd  M
)  gcd  P )  =  if ( ( ( N  =  0  /\  M  =  0 )  /\  P  =  0 ) ,  0 ,  sup ( { x  e.  ZZ  |  ( ( x  ||  N  /\  x  ||  M )  /\  x  ||  P ) } ,  RR ,  <  ) ) )
27 simp1 1021 . . . 4  |-  ( ( N  e.  ZZ  /\  M  e.  ZZ  /\  P  e.  ZZ )  ->  N  e.  ZZ )
28 gcdcl 12487 . . . . . 6  |-  ( ( M  e.  ZZ  /\  P  e.  ZZ )  ->  ( M  gcd  P
)  e.  NN0 )
29283adant1 1039 . . . . 5  |-  ( ( N  e.  ZZ  /\  M  e.  ZZ  /\  P  e.  ZZ )  ->  ( M  gcd  P )  e. 
NN0 )
3029nn0zd 9567 . . . 4  |-  ( ( N  e.  ZZ  /\  M  e.  ZZ  /\  P  e.  ZZ )  ->  ( M  gcd  P )  e.  ZZ )
31 gcdval 12480 . . . 4  |-  ( ( N  e.  ZZ  /\  ( M  gcd  P )  e.  ZZ )  -> 
( N  gcd  ( M  gcd  P ) )  =  if ( ( N  =  0  /\  ( M  gcd  P
)  =  0 ) ,  0 ,  sup ( { x  e.  ZZ  |  ( x  ||  N  /\  x  ||  ( M  gcd  P ) ) } ,  RR ,  <  ) ) )
3227, 30, 31syl2anc 411 . . 3  |-  ( ( N  e.  ZZ  /\  M  e.  ZZ  /\  P  e.  ZZ )  ->  ( N  gcd  ( M  gcd  P ) )  =  if ( ( N  =  0  /\  ( M  gcd  P )  =  0 ) ,  0 ,  sup ( { x  e.  ZZ  | 
( x  ||  N  /\  x  ||  ( M  gcd  P ) ) } ,  RR ,  <  ) ) )
33 gcdeq0 12498 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  P  e.  ZZ )  ->  ( ( M  gcd  P )  =  0  <->  ( M  =  0  /\  P  =  0 ) ) )
34333adant1 1039 . . . . . 6  |-  ( ( N  e.  ZZ  /\  M  e.  ZZ  /\  P  e.  ZZ )  ->  (
( M  gcd  P
)  =  0  <->  ( M  =  0  /\  P  =  0 ) ) )
3534anbi2d 464 . . . . 5  |-  ( ( N  e.  ZZ  /\  M  e.  ZZ  /\  P  e.  ZZ )  ->  (
( N  =  0  /\  ( M  gcd  P )  =  0 )  <-> 
( N  =  0  /\  ( M  =  0  /\  P  =  0 ) ) ) )
3635bicomd 141 . . . 4  |-  ( ( N  e.  ZZ  /\  M  e.  ZZ  /\  P  e.  ZZ )  ->  (
( N  =  0  /\  ( M  =  0  /\  P  =  0 ) )  <->  ( N  =  0  /\  ( M  gcd  P )  =  0 ) ) )
37 simpl3 1026 . . . . . . . 8  |-  ( ( ( N  e.  ZZ  /\  M  e.  ZZ  /\  P  e.  ZZ )  /\  x  e.  ZZ )  ->  P  e.  ZZ )
38 dvdsgcdb 12534 . . . . . . . 8  |-  ( ( x  e.  ZZ  /\  M  e.  ZZ  /\  P  e.  ZZ )  ->  (
( x  ||  M  /\  x  ||  P )  <-> 
x  ||  ( M  gcd  P ) ) )
3917, 19, 37, 38syl3anc 1271 . . . . . . 7  |-  ( ( ( N  e.  ZZ  /\  M  e.  ZZ  /\  P  e.  ZZ )  /\  x  e.  ZZ )  ->  ( ( x 
||  M  /\  x  ||  P )  <->  x  ||  ( M  gcd  P ) ) )
4039anbi2d 464 . . . . . 6  |-  ( ( ( N  e.  ZZ  /\  M  e.  ZZ  /\  P  e.  ZZ )  /\  x  e.  ZZ )  ->  ( ( x 
||  N  /\  (
x  ||  M  /\  x  ||  P ) )  <-> 
( x  ||  N  /\  x  ||  ( M  gcd  P ) ) ) )
4140rabbidva 2787 . . . . 5  |-  ( ( N  e.  ZZ  /\  M  e.  ZZ  /\  P  e.  ZZ )  ->  { x  e.  ZZ  |  ( x 
||  N  /\  (
x  ||  M  /\  x  ||  P ) ) }  =  { x  e.  ZZ  |  ( x 
||  N  /\  x  ||  ( M  gcd  P
) ) } )
4241supeq1d 7154 . . . 4  |-  ( ( N  e.  ZZ  /\  M  e.  ZZ  /\  P  e.  ZZ )  ->  sup ( { x  e.  ZZ  |  ( x  ||  N  /\  ( x  ||  M  /\  x  ||  P
) ) } ,  RR ,  <  )  =  sup ( { x  e.  ZZ  |  ( x 
||  N  /\  x  ||  ( M  gcd  P
) ) } ,  RR ,  <  ) )
4336, 42ifbieq2d 3627 . . 3  |-  ( ( N  e.  ZZ  /\  M  e.  ZZ  /\  P  e.  ZZ )  ->  if ( ( N  =  0  /\  ( M  =  0  /\  P  =  0 ) ) ,  0 ,  sup ( { x  e.  ZZ  |  ( x  ||  N  /\  ( x  ||  M  /\  x  ||  P
) ) } ,  RR ,  <  ) )  =  if ( ( N  =  0  /\  ( M  gcd  P
)  =  0 ) ,  0 ,  sup ( { x  e.  ZZ  |  ( x  ||  N  /\  x  ||  ( M  gcd  P ) ) } ,  RR ,  <  ) ) )
4432, 43eqtr4d 2265 . 2  |-  ( ( N  e.  ZZ  /\  M  e.  ZZ  /\  P  e.  ZZ )  ->  ( N  gcd  ( M  gcd  P ) )  =  if ( ( N  =  0  /\  ( M  =  0  /\  P  =  0 ) ) ,  0 ,  sup ( { x  e.  ZZ  |  ( x  ||  N  /\  ( x  ||  M  /\  x  ||  P
) ) } ,  RR ,  <  ) ) )
456, 26, 443eqtr4a 2288 1  |-  ( ( N  e.  ZZ  /\  M  e.  ZZ  /\  P  e.  ZZ )  ->  (
( N  gcd  M
)  gcd  P )  =  ( N  gcd  ( M  gcd  P ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 1002    = wceq 1395    e. wcel 2200   {crab 2512   ifcif 3602   class class class wbr 4083  (class class class)co 6001   supcsup 7149   RRcr 7998   0cc0 7999    < clt 8181   NN0cn0 9369   ZZcz 9446    || cdvds 12298    gcd cgcd 12474
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-mulrcl 8098  ax-addcom 8099  ax-mulcom 8100  ax-addass 8101  ax-mulass 8102  ax-distr 8103  ax-i2m1 8104  ax-0lt1 8105  ax-1rid 8106  ax-0id 8107  ax-rnegex 8108  ax-precex 8109  ax-cnre 8110  ax-pre-ltirr 8111  ax-pre-ltwlin 8112  ax-pre-lttrn 8113  ax-pre-apti 8114  ax-pre-ltadd 8115  ax-pre-mulgt0 8116  ax-pre-mulext 8117  ax-arch 8118  ax-caucvg 8119
This theorem depends on definitions:  df-bi 117  df-stab 836  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-po 4387  df-iso 4388  df-iord 4457  df-on 4459  df-ilim 4460  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287  df-recs 6451  df-frec 6537  df-sup 7151  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187  df-sub 8319  df-neg 8320  df-reap 8722  df-ap 8729  df-div 8820  df-inn 9111  df-2 9169  df-3 9170  df-4 9171  df-n0 9370  df-z 9447  df-uz 9723  df-q 9815  df-rp 9850  df-fz 10205  df-fzo 10339  df-fl 10490  df-mod 10545  df-seqfrec 10670  df-exp 10761  df-cj 11353  df-re 11354  df-im 11355  df-rsqrt 11509  df-abs 11510  df-dvds 12299  df-gcd 12475
This theorem is referenced by:  rpmulgcd  12547  coprimeprodsq  12780
  Copyright terms: Public domain W3C validator