Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > iinconstm | GIF version |
Description: Indexed intersection of a constant class, i.e. where 𝐵 does not depend on 𝑥. (Contributed by Jim Kingdon, 19-Dec-2018.) |
Ref | Expression |
---|---|
iinconstm | ⊢ (∃𝑦 𝑦 ∈ 𝐴 → ∩ 𝑥 ∈ 𝐴 𝐵 = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 2733 | . . . 4 ⊢ 𝑧 ∈ V | |
2 | eliin 3878 | . . . 4 ⊢ (𝑧 ∈ V → (𝑧 ∈ ∩ 𝑥 ∈ 𝐴 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝑧 ∈ 𝐵)) | |
3 | 1, 2 | ax-mp 5 | . . 3 ⊢ (𝑧 ∈ ∩ 𝑥 ∈ 𝐴 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝑧 ∈ 𝐵) |
4 | r19.3rmv 3505 | . . 3 ⊢ (∃𝑦 𝑦 ∈ 𝐴 → (𝑧 ∈ 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝑧 ∈ 𝐵)) | |
5 | 3, 4 | bitr4id 198 | . 2 ⊢ (∃𝑦 𝑦 ∈ 𝐴 → (𝑧 ∈ ∩ 𝑥 ∈ 𝐴 𝐵 ↔ 𝑧 ∈ 𝐵)) |
6 | 5 | eqrdv 2168 | 1 ⊢ (∃𝑦 𝑦 ∈ 𝐴 → ∩ 𝑥 ∈ 𝐴 𝐵 = 𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 = wceq 1348 ∃wex 1485 ∈ wcel 2141 ∀wral 2448 Vcvv 2730 ∩ ciin 3874 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-v 2732 df-iin 3876 |
This theorem is referenced by: iin0imm 4154 |
Copyright terms: Public domain | W3C validator |