ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iinconstm GIF version

Theorem iinconstm 3875
Description: Indexed intersection of a constant class, i.e. where 𝐵 does not depend on 𝑥. (Contributed by Jim Kingdon, 19-Dec-2018.)
Assertion
Ref Expression
iinconstm (∃𝑦 𝑦𝐴 𝑥𝐴 𝐵 = 𝐵)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑦,𝐴
Allowed substitution hint:   𝐵(𝑦)

Proof of Theorem iinconstm
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 vex 2729 . . . 4 𝑧 ∈ V
2 eliin 3871 . . . 4 (𝑧 ∈ V → (𝑧 𝑥𝐴 𝐵 ↔ ∀𝑥𝐴 𝑧𝐵))
31, 2ax-mp 5 . . 3 (𝑧 𝑥𝐴 𝐵 ↔ ∀𝑥𝐴 𝑧𝐵)
4 r19.3rmv 3499 . . 3 (∃𝑦 𝑦𝐴 → (𝑧𝐵 ↔ ∀𝑥𝐴 𝑧𝐵))
53, 4bitr4id 198 . 2 (∃𝑦 𝑦𝐴 → (𝑧 𝑥𝐴 𝐵𝑧𝐵))
65eqrdv 2163 1 (∃𝑦 𝑦𝐴 𝑥𝐴 𝐵 = 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104   = wceq 1343  wex 1480  wcel 2136  wral 2444  Vcvv 2726   ciin 3867
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-v 2728  df-iin 3869
This theorem is referenced by:  iin0imm  4147
  Copyright terms: Public domain W3C validator