ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iinconstm GIF version

Theorem iinconstm 3790
Description: Indexed intersection of a constant class, i.e. where 𝐵 does not depend on 𝑥. (Contributed by Jim Kingdon, 19-Dec-2018.)
Assertion
Ref Expression
iinconstm (∃𝑦 𝑦𝐴 𝑥𝐴 𝐵 = 𝐵)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑦,𝐴
Allowed substitution hint:   𝐵(𝑦)

Proof of Theorem iinconstm
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 r19.3rmv 3421 . . 3 (∃𝑦 𝑦𝐴 → (𝑧𝐵 ↔ ∀𝑥𝐴 𝑧𝐵))
2 vex 2661 . . . 4 𝑧 ∈ V
3 eliin 3786 . . . 4 (𝑧 ∈ V → (𝑧 𝑥𝐴 𝐵 ↔ ∀𝑥𝐴 𝑧𝐵))
42, 3ax-mp 5 . . 3 (𝑧 𝑥𝐴 𝐵 ↔ ∀𝑥𝐴 𝑧𝐵)
51, 4syl6rbbr 198 . 2 (∃𝑦 𝑦𝐴 → (𝑧 𝑥𝐴 𝐵𝑧𝐵))
65eqrdv 2113 1 (∃𝑦 𝑦𝐴 𝑥𝐴 𝐵 = 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104   = wceq 1314  wex 1451  wcel 1463  wral 2391  Vcvv 2658   ciin 3782
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097
This theorem depends on definitions:  df-bi 116  df-tru 1317  df-nf 1420  df-sb 1719  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2245  df-ral 2396  df-v 2660  df-iin 3784
This theorem is referenced by:  iin0imm  4060
  Copyright terms: Public domain W3C validator