![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > iinconstm | GIF version |
Description: Indexed intersection of a constant class, i.e. where 𝐵 does not depend on 𝑥. (Contributed by Jim Kingdon, 19-Dec-2018.) |
Ref | Expression |
---|---|
iinconstm | ⊢ (∃𝑦 𝑦 ∈ 𝐴 → ∩ 𝑥 ∈ 𝐴 𝐵 = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 2755 | . . . 4 ⊢ 𝑧 ∈ V | |
2 | eliin 3906 | . . . 4 ⊢ (𝑧 ∈ V → (𝑧 ∈ ∩ 𝑥 ∈ 𝐴 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝑧 ∈ 𝐵)) | |
3 | 1, 2 | ax-mp 5 | . . 3 ⊢ (𝑧 ∈ ∩ 𝑥 ∈ 𝐴 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝑧 ∈ 𝐵) |
4 | r19.3rmv 3528 | . . 3 ⊢ (∃𝑦 𝑦 ∈ 𝐴 → (𝑧 ∈ 𝐵 ↔ ∀𝑥 ∈ 𝐴 𝑧 ∈ 𝐵)) | |
5 | 3, 4 | bitr4id 199 | . 2 ⊢ (∃𝑦 𝑦 ∈ 𝐴 → (𝑧 ∈ ∩ 𝑥 ∈ 𝐴 𝐵 ↔ 𝑧 ∈ 𝐵)) |
6 | 5 | eqrdv 2187 | 1 ⊢ (∃𝑦 𝑦 ∈ 𝐴 → ∩ 𝑥 ∈ 𝐴 𝐵 = 𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 = wceq 1364 ∃wex 1503 ∈ wcel 2160 ∀wral 2468 Vcvv 2752 ∩ ciin 3902 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2171 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ral 2473 df-v 2754 df-iin 3904 |
This theorem is referenced by: iin0imm 4183 |
Copyright terms: Public domain | W3C validator |