ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iinconstm GIF version

Theorem iinconstm 3897
Description: Indexed intersection of a constant class, i.e. where 𝐵 does not depend on 𝑥. (Contributed by Jim Kingdon, 19-Dec-2018.)
Assertion
Ref Expression
iinconstm (∃𝑦 𝑦𝐴 𝑥𝐴 𝐵 = 𝐵)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑦,𝐴
Allowed substitution hint:   𝐵(𝑦)

Proof of Theorem iinconstm
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 vex 2742 . . . 4 𝑧 ∈ V
2 eliin 3893 . . . 4 (𝑧 ∈ V → (𝑧 𝑥𝐴 𝐵 ↔ ∀𝑥𝐴 𝑧𝐵))
31, 2ax-mp 5 . . 3 (𝑧 𝑥𝐴 𝐵 ↔ ∀𝑥𝐴 𝑧𝐵)
4 r19.3rmv 3515 . . 3 (∃𝑦 𝑦𝐴 → (𝑧𝐵 ↔ ∀𝑥𝐴 𝑧𝐵))
53, 4bitr4id 199 . 2 (∃𝑦 𝑦𝐴 → (𝑧 𝑥𝐴 𝐵𝑧𝐵))
65eqrdv 2175 1 (∃𝑦 𝑦𝐴 𝑥𝐴 𝐵 = 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105   = wceq 1353  wex 1492  wcel 2148  wral 2455  Vcvv 2739   ciin 3889
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-v 2741  df-iin 3891
This theorem is referenced by:  iin0imm  4170
  Copyright terms: Public domain W3C validator