ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iineq1 Unicode version

Theorem iineq1 3791
Description: Equality theorem for restricted existential quantifier. (Contributed by NM, 27-Jun-1998.)
Assertion
Ref Expression
iineq1  |-  ( A  =  B  ->  |^|_ x  e.  A  C  =  |^|_
x  e.  B  C
)
Distinct variable groups:    x, A    x, B
Allowed substitution hint:    C( x)

Proof of Theorem iineq1
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 raleq 2598 . . 3  |-  ( A  =  B  ->  ( A. x  e.  A  y  e.  C  <->  A. x  e.  B  y  e.  C ) )
21abbidv 2230 . 2  |-  ( A  =  B  ->  { y  |  A. x  e.  A  y  e.  C }  =  { y  |  A. x  e.  B  y  e.  C }
)
3 df-iin 3780 . 2  |-  |^|_ x  e.  A  C  =  { y  |  A. x  e.  A  y  e.  C }
4 df-iin 3780 . 2  |-  |^|_ x  e.  B  C  =  { y  |  A. x  e.  B  y  e.  C }
52, 3, 43eqtr4g 2170 1  |-  ( A  =  B  ->  |^|_ x  e.  A  C  =  |^|_
x  e.  B  C
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1312    e. wcel 1461   {cab 2099   A.wral 2388   |^|_ciin 3778
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 681  ax-5 1404  ax-7 1405  ax-gen 1406  ax-ie1 1450  ax-ie2 1451  ax-8 1463  ax-10 1464  ax-11 1465  ax-i12 1466  ax-bndl 1467  ax-4 1468  ax-17 1487  ax-i9 1491  ax-ial 1495  ax-i5r 1496  ax-ext 2095
This theorem depends on definitions:  df-bi 116  df-tru 1315  df-nf 1418  df-sb 1717  df-clab 2100  df-cleq 2106  df-clel 2109  df-nfc 2242  df-ral 2393  df-iin 3780
This theorem is referenced by:  riin0  3848  iin0r  4051
  Copyright terms: Public domain W3C validator