ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iineq1 Unicode version

Theorem iineq1 3822
Description: Equality theorem for restricted existential quantifier. (Contributed by NM, 27-Jun-1998.)
Assertion
Ref Expression
iineq1  |-  ( A  =  B  ->  |^|_ x  e.  A  C  =  |^|_
x  e.  B  C
)
Distinct variable groups:    x, A    x, B
Allowed substitution hint:    C( x)

Proof of Theorem iineq1
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 raleq 2624 . . 3  |-  ( A  =  B  ->  ( A. x  e.  A  y  e.  C  <->  A. x  e.  B  y  e.  C ) )
21abbidv 2255 . 2  |-  ( A  =  B  ->  { y  |  A. x  e.  A  y  e.  C }  =  { y  |  A. x  e.  B  y  e.  C }
)
3 df-iin 3811 . 2  |-  |^|_ x  e.  A  C  =  { y  |  A. x  e.  A  y  e.  C }
4 df-iin 3811 . 2  |-  |^|_ x  e.  B  C  =  { y  |  A. x  e.  B  y  e.  C }
52, 3, 43eqtr4g 2195 1  |-  ( A  =  B  ->  |^|_ x  e.  A  C  =  |^|_
x  e.  B  C
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1331    e. wcel 1480   {cab 2123   A.wral 2414   |^|_ciin 3809
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119
This theorem depends on definitions:  df-bi 116  df-tru 1334  df-nf 1437  df-sb 1736  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ral 2419  df-iin 3811
This theorem is referenced by:  riin0  3879  iin0r  4088
  Copyright terms: Public domain W3C validator