Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > iineq1 | Unicode version |
Description: Equality theorem for restricted existential quantifier. (Contributed by NM, 27-Jun-1998.) |
Ref | Expression |
---|---|
iineq1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | raleq 2661 | . . 3 | |
2 | 1 | abbidv 2284 | . 2 |
3 | df-iin 3869 | . 2 | |
4 | df-iin 3869 | . 2 | |
5 | 2, 3, 4 | 3eqtr4g 2224 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wceq 1343 wcel 2136 cab 2151 wral 2444 ciin 3867 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-iin 3869 |
This theorem is referenced by: riin0 3937 iin0r 4148 |
Copyright terms: Public domain | W3C validator |