ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iineq1 Unicode version

Theorem iineq1 3880
Description: Equality theorem for restricted existential quantifier. (Contributed by NM, 27-Jun-1998.)
Assertion
Ref Expression
iineq1  |-  ( A  =  B  ->  |^|_ x  e.  A  C  =  |^|_
x  e.  B  C
)
Distinct variable groups:    x, A    x, B
Allowed substitution hint:    C( x)

Proof of Theorem iineq1
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 raleq 2661 . . 3  |-  ( A  =  B  ->  ( A. x  e.  A  y  e.  C  <->  A. x  e.  B  y  e.  C ) )
21abbidv 2284 . 2  |-  ( A  =  B  ->  { y  |  A. x  e.  A  y  e.  C }  =  { y  |  A. x  e.  B  y  e.  C }
)
3 df-iin 3869 . 2  |-  |^|_ x  e.  A  C  =  { y  |  A. x  e.  A  y  e.  C }
4 df-iin 3869 . 2  |-  |^|_ x  e.  B  C  =  { y  |  A. x  e.  B  y  e.  C }
52, 3, 43eqtr4g 2224 1  |-  ( A  =  B  ->  |^|_ x  e.  A  C  =  |^|_
x  e.  B  C
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1343    e. wcel 2136   {cab 2151   A.wral 2444   |^|_ciin 3867
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-iin 3869
This theorem is referenced by:  riin0  3937  iin0r  4148
  Copyright terms: Public domain W3C validator