ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iineq1 Unicode version

Theorem iineq1 3926
Description: Equality theorem for restricted existential quantifier. (Contributed by NM, 27-Jun-1998.)
Assertion
Ref Expression
iineq1  |-  ( A  =  B  ->  |^|_ x  e.  A  C  =  |^|_
x  e.  B  C
)
Distinct variable groups:    x, A    x, B
Allowed substitution hint:    C( x)

Proof of Theorem iineq1
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 raleq 2690 . . 3  |-  ( A  =  B  ->  ( A. x  e.  A  y  e.  C  <->  A. x  e.  B  y  e.  C ) )
21abbidv 2311 . 2  |-  ( A  =  B  ->  { y  |  A. x  e.  A  y  e.  C }  =  { y  |  A. x  e.  B  y  e.  C }
)
3 df-iin 3915 . 2  |-  |^|_ x  e.  A  C  =  { y  |  A. x  e.  A  y  e.  C }
4 df-iin 3915 . 2  |-  |^|_ x  e.  B  C  =  { y  |  A. x  e.  B  y  e.  C }
52, 3, 43eqtr4g 2251 1  |-  ( A  =  B  ->  |^|_ x  e.  A  C  =  |^|_
x  e.  B  C
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    e. wcel 2164   {cab 2179   A.wral 2472   |^|_ciin 3913
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-iin 3915
This theorem is referenced by:  riin0  3984  iin0r  4198
  Copyright terms: Public domain W3C validator