Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  iineq1 Unicode version

Theorem iineq1 3836
 Description: Equality theorem for restricted existential quantifier. (Contributed by NM, 27-Jun-1998.)
Assertion
Ref Expression
iineq1
Distinct variable groups:   ,   ,
Allowed substitution hint:   ()

Proof of Theorem iineq1
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 raleq 2630 . . 3
21abbidv 2258 . 2
3 df-iin 3825 . 2
4 df-iin 3825 . 2
52, 3, 43eqtr4g 2198 1
 Colors of variables: wff set class Syntax hints:   wi 4   wceq 1332   wcel 1481  cab 2126  wral 2417  ciin 3823 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122 This theorem depends on definitions:  df-bi 116  df-tru 1335  df-nf 1438  df-sb 1737  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ral 2422  df-iin 3825 This theorem is referenced by:  riin0  3893  iin0r  4102
 Copyright terms: Public domain W3C validator